最近看到的关于苹果公司的面试试题,很有意思的也很有启迪性的,分享给大家有空的看看啦,答案的过两天的附上的啊
苹果公司在招聘员工时,会向求职者问一些“可汗学院”(Khan Academy)提出的考验智商的谜题。你 可能没听说过“可汗学院”,但“可汗学院”的谜题被苹果采用一定是有其道理的。可汗学院由孟加拉裔美国人萨尔曼•可汗(Salman Kahan)创立,是一家由谷歌和比尔&梅琳达•盖茨基金会背后支持的教育性非营利组织,主旨在于利用网络影片进行免费授课,目前已经有关于数 学、历史、金融、物理、化学、生物、天文学等科目的内容。
苹果在面试过程中随时都有可能向求职者抛出这些考验智商与逻辑的问题,因此如果你向往进入苹果工作,这些艰涩的问题在面试前必须谨慎对待仔细研究,因为苹果的原则是——不能出错,哪怕你已经级别很高,是冲着苹果的高级软件工程师职位而来也不例外。
幸运的是,这些问题虽然刁钻,但却都有唯一的答案,所以你只要有备而来,还是可以应对自如的,下面是8个苹果面试过程中求职者可能遇到的问题,以及已经被各路聪明的求职者**的答案。
问题一:
“你面前有两扇门,其中一扇门内藏着宝藏,但如果你不小心闯入另一扇门,只能痛苦地慢慢死掉……”
这一听就是那种经典的最令人头痛的一类问题,但其实与其他问题相比,这只是个热身。在这两扇门后面,有两个人,这两个人都知道哪扇门后有宝藏,哪扇门擅闯者死,而这两个人呢,一个人只说真话,一个人只说假话。
谁说真话谁说假话?那就要看你有没有智慧自己找出来了,游戏规则是,你只能问这两个人每人一个问题。
那么,你问什么问题?问哪个人?根据他们的回答,你又该怎么做?
问题二:
“你前面站了5个人,他们中间只有一个人讲真话……”
这个问题比上个问题难就难在,你只知道他们五个中有一个只讲真话,但其余四个,他们有时候讲真话,有时候讲假话,只有一点可以确定,这四个人将真话 和假话有个规律:如果这次讲了真话,下次就会讲假话,如果这次讲假话,下次就讲真话。你的任务是,把五个人中那个只讲真话的人找出来。
你可以问两个问题,两个问题可以向同一个人发问,也可以分别问两个人。
你该问什么问题?
小提示:你可以这样安排两个问题承担的任务:首先你可以先问一个问题,不管得到的答案是什么,你都能从中知道下一个问题你将得到的答案是真是假。
问题三:
“外星人打算将地球用来种蘑菇,并且已经抓了十个人类……”
外星人用这十个人代表地球60亿人口,将通过外星人的方式来测试这十个人,决定地球是不是有资格加入跨星际委员会,如果没有,就把地球变成一个蘑菇农场。
明天,这十个人将被关在一间漆黑的屋子里前后排成一队,外星人将给每个人戴一顶帽子,帽子为紫色或者绿色,然后外星人会将灯打开,这十个人每个人都无法看见自己头上的帽子是什么颜色,但可以看见排在你前面的每个人头上帽子的颜色。
帽子的颜色是随机的,可能全是紫的,也可能全是绿的,或者是任意的组合。
外星人会从后往前问每一个人:“你头上的帽子是什么颜色?”如果这个人答对了,这个人就安然无事,他所代表的地球上6亿人口也将获救。否则,这个人将被爆头,外星人将把他所代表的6亿人口变成蘑菇的肥料。每个人的答案屋子里所有人都可以听到。
现在,人类的**在你手上,你可以设计一个方案,使这十个人提前制定一个计划,这个计划必须拯救尽可能多的人。
提示:有个方案可以让你拯救其中至少九个人。
问题四:
“100个完美的逻辑学家坐在一个房间里……”
这是一个电视真人秀节目,节目里100个拥有完美无瑕逻辑思维能力的人围成一圈坐在一个房间里。在进入房间前,这100个人被告知,100个人中至 少有一个人的额头是蓝色的。你可以看见别人额头的颜色,但无法看到自己的,你需要对自己额头是不是蓝色进行猜测,在房间的灯被关掉时,如果你推测出你的额 头是蓝色的,你需要站起来离开。
然后房间的灯被再次打开,那些认为自己额头是蓝色的人已经不在屋内。接下来灯会再次被关掉,剩下的人中推测自己额头是蓝色的离开,如此重复。
问题来了,假设这100个人的额头都是蓝色的,将会发生什么情况?注意,这100个人都有完美无瑕的逻辑推理能力,他们会根据其他人的额头颜色对自己进行合理的推理和猜测。
提示:想想看,如果100个人不全是蓝色额头,又会发生什么情况?
问题五:
“你有一个横6竖6的方格……”
你现在在左上第一个格子里,你的任务是移动到最右下脚的格子里,你每次只能向右或者向下移动,不能斜向移动,也不能后退。
你能找出几种方法移动到最右下脚的格子?
问题六:
“逻辑学家们围成一圈坐着,他们的额头上面画有数字……”
又来一个逻辑学家围成一圈的问题,这次是这样的,三个拥有完美逻辑推理能力的人围成一圈坐在一个房间里,每个人的额头上都画着一个大于0的数字,三个人的数字各不相同,每个人都看得见其他两个人的数字,看不见自己的。
这三个数字的情况是,其中一个数字是其他两个数字的和,已知的情况还有,其中一个逻辑学家的数字是20,一个是30。
游戏组织者从这三个逻辑学家后面走过,并问三个人各自额头上的数字是什么。但第一轮每个逻辑学家都回答他们无法推测自己的数字是什么。游戏组织者只好进行第二轮的发问,这是为什么?你能据此猜出三个逻辑学家的数字吗?
问题七:
“你面前有一百个灯泡,排成一排……”
一百个灯泡排成一排,第一轮你把他们全都打开亮着,然后第二轮,你每隔一个灯泡关掉一个,这样所有排在偶数的灯泡都被关掉了。
然后第三轮,你每隔两个灯泡,将开着的灯泡关掉,关掉的灯泡打开(也就是说将所有排在3的倍数的灯泡的开关状态改变)。
以此类推,你将所有排在4的倍数的灯泡的开关状态改变,然后将排在5的倍数的灯泡开关状态改变……
第100轮的时候,还有几盏灯泡亮着?
提示:如果你是第n轮(n大于1小于100),排在n的倍数位置的灯泡的开关状态就发生转变。
反过来,比如第8个灯泡,当你在8的因子轮(即第1,2,4和8轮)的时候,它就会改变开关状态。所以对于第m个灯泡,如果m有奇数个因子,你的开关状态就发生奇数次变化。
问题八:
“你有一个立方体,立方体的边长是3……”
这个问题比前面那个从左上格子走到右下格子的问题难,因为那毕竟是个平面问题。如图所示,这次的任务是从立方体的背面左上的小立方体走到完全相对的正面右下小立方体。
你可以往上移,也可以往下移,还可以往前移。You can move toward the front, you can move down, or you can move upward。
问题还是,你共有几种走法? |