具体未考证“数字电路”是何时出现的,但至少本人读书时那玩意儿可并不是那么的吃香。现在回想起来稍许悟出点道理来,那就是当时的器件规模实在是太小,以至于很难和“数字”攀亲。记得,当时CPU(PDP11/34)是板级的,一块大板上密密麻麻地布满了各种小规模IC;内存是磁芯的,两快大板夹着磁芯组件的那种“三明治”结构。记得当初有两门重要的课程——模拟电路和脉冲电路,它们的最大差异也仅在于模拟电路注重于连续量和线性分析而脉冲电路则注重于离散态和非线性分析。
现在不妨再考察一下数字电路中的“数字”是如何产生的。首先看物理信号(就电而言),有电压或电流的幅度,频率和相位等,这些本质上都是连续信号。若不考虑任何附加标准,这些物理量的意义仅是其自身所体现的物理意义而已,无其它含义。但若能给出一定的“标准”,则其含义就不再仅限于其自身的物理意义,其可以表示距离、速度、力、温度、真假....等等。这里实际上已经涉及到两类量,即连续量(如距离、、速度、力、温度)和离散量(如真假)。下面给出具体的离散量判别标准。
考虑电压信号,给出四个“门限”,即Uih(输入高)、Uil(输入低)、Uoh(输出高)、Uol(输出低),附加给出电源电压Vcc。当输入信号Ui在范围0~Uil之间时,系统认为其表示低(按正逻辑为假);而当输入信号Ui在范围Uih~Vcc之间时,则系统认为其表示高(按正逻辑为真)。对于输出则要求,低(按正逻辑为假)时输出电压Uo必须在0~Uol范围内;而高(按正逻辑为真)时则输出电压Uo必须在Uoh~Vcc之间。
对于上述门限,必须满足下列几个关系:
Uih > Uil
Uoh > Uih
Uol < Uil
此外,Uil必须低于器件的实际门限临界点,Uih则必须高于器件的相应临界点,且必须考虑器件的离散性,以保证门限标准的一致性。为此,各个器件厂商会在其器件数据手册中给出相关的统一参数供参考。
有了那么一套门限标准,“模拟信号”才可能得以离散化成逻辑信号——真和假。脉冲电路随即也就演变成了逻辑电路。推而广之,“数字电路”也就应运而生了(一串逻辑量就是二进制的数字量)。
|