若R1>>R3,C2>>C1,有: 为在fc点获得θ的超前补偿,有:
fL使低频增益加大,提高稳压精度;fz引入相位超前补偿,增加相位裕度;fp1、fp2使高频干扰衰减。注意满足:R1>>R3,C2>>C1。 3.2补偿网络设计实例 画出Tu的Bode图之后,就可以设计补偿网络了。下面对几个实际电路进行分析。 3.2.1 非隔离的电压型BUCK(TPS40007)
输入5.5V,输出3.3V/5A,开关频率fs=300kHz。按照TPS40007的内部结构,锯齿波的幅值是Vm=0.9V,所以控制电压Vc到占空比D的传递函数Gain=1/Vm。补偿网络的设计步骤如下: /psimu/ZXTJ/TJ6700/small signal 3V 第一步:去掉补偿网络,对控制电压Vc(即补偿网络的输出)进行直流扫描,找到使Vo=3.3V时的Vc值,将Vc的直流分量设为次值,即设置了电路的静态工作点。 第二步:对Vc进行交流扫描,得到未补偿的Vc到Vo的传递函数Tu。Tu的直流增益为15.7dB,交越频率为10.5kHz。 第三步:设计补偿网络参数。由于是电压型控制,所以采用PID补偿。设补偿后的交越频率fc=20kHz,在fc处得到60°的相位补偿;而Tu在fc处的增益是dbGc=-12.38;设置极点fp2=180kHz以抑制高频干扰;R1=36K。按上述参数得到补偿网络的反馈参数:R2=40K(取39k), C2=7.4nF(取4.7nF),C1=53pF(取47pF),R3=1k, C3=820pF(取1nF)。 仿真结果:fc=24.7kHz, 相位裕度φm=43°。下面是实测的环路BODE 图。 实测的交越频率及相位裕度都比仿真的大些,这是由于频率高了以后,电路的分布参数影响的结果。
|