系统软件设计 为了提高系统的可读性以及代码效率,软件采用状态机思想设计,图5所示为系统的状态转换图。系统上电复位后进入SAMPLE采样状态,若检测到采样完成标志FINISH则进入JUDGE状态进行判断,如果FAULT不为0即有故障信号 (过压/欠压、过载、短路),则进入PROTECT状态关闭输出,并跳转到WAIT状态等待故障信号消除。当故障信号消除后,系统软重启,开始新的采样及检测。JUDGE状态后如果未检测到故障信号,则进入NORMAL正常状态,进行电压调整。
系统上电后,首先完成各个外设的初始化,主要包括系统时钟、定时器、GPIO口、ADC、DMA、中断及SPI的初始化。在此,定时器和中断一旦初始化完成,PWM及SPWM波就会生成。考虑到过流、短路保护及反馈稳压的实时性要求较高,故在中断内完成。欠压、过压对实时性要求低,放在主程序内。为提升系统的性能,ADC采样使用DMA方式传输数据,传输完成后,发出中断申请,对采集到的数据进行简单滤波处理,其他功能函数调用此数据完成相应的保护及稳压功能。主程序的流程图如图6所示。
调试与实验
根据以上思想试制一台400 W的样机,采用IRF3205作为推挽升压的功率管,HER307作为整流二极管,全桥逆变功率管则采用IRF840。前级升压的PWM波频率设置为20 kHz,后级SPWM波的频率设置为18 kHz,输出滤波电感L为1 mH,输出滤波电容C为4.7 μF。实际测试正弦交流输出电压精度为220 V±1%,频率精度为50 Hz±0.1%,THD小于1.5%,逆变效率大于87%,其满负载时的试验波形如图7所示(输出经20 kΩ/100 kΩ电阻分压测到)。
结束语
文中完整地讨论了以STM32单片机为主控制器的数控正弦波逆变电源的设计,并对其中涉及关键问题进行了详细的讨论。针对高端电子设备对逆变电源的更高要求,提出了一种有效的解决途径。使用该设计方案在简化逆变电源的硬件设计的同时,大大提升了电源的品质与性能,具有很高的推广价值。
|