在使用M57962L驱动大功率IGBT模块时,应注意以下三个方面的问题:
1)驱动芯片的最大输出电流峰值受栅极电阻Rg的最小值限制,例如,对于M57962L来说,Rg的允许值在5Ω左右,这个值对于大功率的IGBT来说高了一些,且当Rg较高时,会引起IGBT的开关上升时间td(on)、下降时间td(off)以及开关损耗的增大,在较高开关频率(5kHz以上)应用时,这些附加损耗是不可接受的。
2)即便是这些附加损耗和较慢的开关时间可以被接受,驱动电路的功耗也必须考虑,当开关频率高到一定程度时(高于14kHz),会引起驱动芯片过热。
3)驱动电路缓慢的关断会使大功率IGBT模块的开关效率降低,这是因为大功率IGBT模块的栅极寄生电容相对比较大,而驱动电路的输出阻抗不够低。还有,驱动电路缓慢的关断还会使大功率IGBT模块需要较大的吸收电容。
以上这三种限制可能会产生严重的后果,但通过附加的Booster电路都可以加以克服,如图9所示。
从图10(a)可以看出,在IGBT过流信号输出以后,门极电压会以一个缓慢的斜率下降。图10(b)及图10(c)给出了IGBT短路时的软关断过程(集电极-发射极之间的电压uCE和集电极电流iC的软关断波形)。
3结语
随着电力电子技术的快速发展,三相逆变器的应用变得非常广泛。近年来,随着IGBT制造技术的提高,相继出现了电压等级越来越高、额定功率越来越大的单管、两单元IGBT模块及六单元IGBT模块,同时性能价格比的提高使得IGBT在三相逆变器的设计中占有很大的比重,成为许多设计人员首选的功率器件。随之而来的是IGBT的驱动芯片也得到了很大的发展,设计人员、生产厂家都给予了高度重视,小型化、多功能集成化成为人们不断追求的目标。相信随着制造技术的发展,将会研制出更多更好的IGBT驱动芯片,并得到广泛的应用。
|