打印

STM32 USB 程序将BULK EP改成双缓冲机制后,一直狂飚到了1MB/S

[复制链接]
1194|2
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
拿起书本|  楼主 | 2014-7-29 15:52 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
前天测试自己编写的USB驱动程序时候发现从主机到STM32的OUT传输(主机到设备)速率竟然只有最高33KB/S,实在是晕死了。经过研究后发现是驱动程序中设置的PIPE MaxTransferSize参数的关系,原先设置64只能33KB/S,后参考其他USB设备驱动程序的值,设置成了65535,再测试USB OUT的速度,达到了500KB/S,终于解决了驱动程序的瓶颈。不过算下USB 2.0全速的通讯速率是12Mb/S,排除掉CRC、令牌、SOF等等开销怎么也应该不止最大500KB/S啊。到网上看了看,基本上应该能达到600KB/S~700KB/S以上,我现在的速度应该还有很大的提升才是。

看看程序,发现

void EP3_OUT_Callback(void)//EP3 OUT的回调函数,当EP3接收到数据时候中断调用该函数
{
  count_out = GetEPRxCount(ENDP3);//获得接收到的数据长度
  PMAToUserBufferCopy(buffer_out, ENDP3_RXADDR, count_out);//将数据从USB EP3 RX的缓冲区拷贝到用户指定的数组中
  SetEPRxValid(ENDP3); //完成拷贝后置有效状态,从而EP3发送ACK主机可以进行下一个数据包的发送
}

试着将PMAToUserBufferCopy这句注释掉(这样STM32就不处理接收到的数据了)后再测试速度,惊奇地发现速度竟然达到了997KB/S!晚上仔细想了想,数据肯定是要使用的,这个数据拷贝的过程的时间消费总是少不了的;由于通常情况下USB设备BULK数据接收的步骤就是:接收到数据,置NAK->将缓冲区数据拷贝到用户区(用户处理过程)->发ACK通知主机完成了完整的接收可以发送下一个->主机发送下一个,按照以上的步骤USB接收一步步的进行,只要STM32不完成数据处理,状态就一直是NAK,主机就会不停地发送该数据包,浪费了带宽,因此就会导致我上面最大速度500KB/S难以再增加的情况!不甘心啊~~
   
昨天晚上又仔细研究了STM32的技术参考手册的USB章节内容,里面提到BULK可以采用双缓冲机制(PING-PONG)进行处理,正好可以解决上面的情况。双缓冲机制的原理就是分配2块接收缓冲,STM32的用户处理和USB接口可以分别交替占用2个缓冲区,当USB端点接收数据写其中一个缓冲区的时候,用户的应用程序可以同时处理另一个缓冲区,这样缓冲区依次交换占有者,只要用户处理程序在USB端点接收的时间片段内完成处理,就能够完全不影响USB的通讯速度!
   
程序部分修改

一、EP3_OUT的设置修改,
//ZYP:修改EP3为BULK双缓冲方式-------------------------
  SetEPType(ENDP3, EP_BULK);
  SetEPDoubleBuff(ENDP3);
  SetEPDblBuffAddr(ENDP3, ENDP3_BUF0Addr, ENDP3_BUF1Addr);
  SetEPDblBuffCount(ENDP3, EP_DBUF_OUT, VIRTUAL_COM_PORT_DATA_SIZE);
  ClearDTOG_RX(ENDP3);
  ClearDTOG_TX(ENDP3);
  ToggleDTOG_TX(ENDP3);
  SetEPRxStatus(ENDP3, EP_RX_VALID);
  SetEPTxStatus(ENDP3, EP_TX_DIS);
//------------------------------------------------------

二、EP3_OUT回调函数的修改
void EP3_OUT_Callback(void)
{
//ZYP:以下是修改成EP3双缓冲OUT后的处理函数
  if (GetENDPOINT(ENDP3) & EP_DTOG_TX)//先判断本次接收到的数据是放在哪块缓冲区的
  {
    FreeUserBuffer(ENDP3, EP_DBUF_OUT); //先释放用户对缓冲区的占有,这样的话USB的下一个接收过程可以立刻进行,同时用户并行进行下面处理
    count_out = GetEPDblBuf0Count(ENDP3);//读取接收到的字节数
    PMAToUserBufferCopy(buffer_out, ENDP3_BUF0Addr, count_out);
  }
  else
  {
    FreeUserBuffer(ENDP3, EP_DBUF_OUT);  
    count_out = GetEPDblBuf1Count(ENDP3);
    PMAToUserBufferCopy(buffer_out, ENDP3_BUF1Addr, count_out);
  }
}
   
经过上面的修改,终于解决了STM32在处理接收数据时导致主机等待的情况,用BUS HOUND软件测试了下 ...

哈哈,这下终于爽了。

PS:上面的FreeUserBuffer(ENDP3, EP_DBUF_OUT); 这句话的上下位置是关键,如果放到函数的后面,则仍旧会有主机等待STM32处理数据的情况,速度仍然是500KB/S!
   
把这句话放在拷贝函数的前面的话就真正把双缓冲PING-PONG机制用起来了。大致算了下PMAToUserBufferCopy(buffer_out, ENDP3_BUF1Addr, count_out);这句话当count_out为最大值64的时候STM32执行需要302个周期,72MHZ情况下约4.2微秒执行时间,而USB传输按照12Mb/s的线速度传输64字节的数据至少也得40微秒,因此只要PMAToUserBufferCopy的时间不超过40微秒,就不会导致缓冲区竞争的情况。

------------------------------------------------------------------分割线--------------------------------------------------------------------

沙发
拿起书本|  楼主 | 2014-7-29 15:52 | 只看该作者
STM32中断说明

STM32的USB模块可以产生三种中断:USB唤醒中断、USB高优先级中断和USB低优先级中断,在STM32的参考手册中没有详细说明这三种中断对应哪些事件,现说明如下:

1)USB唤醒中断:在中断向量表中的位置是42。这个中断在USB设备从暂停模式唤醒时产生,唤醒事件由USB_ISTR寄存器的WKUP位标识。

2)USB高优先级中断:在中断向量表中的位置是19。这个中断仅由USB同步(Isochronous)模式传输或双缓冲块(Bulk)传输模式下的正确传输事件产生,正确传输事件由USB_ISTR寄存器的CTR位标识。

3)USB低优先级中断:在中断向量表中的位置是20。这个中断由所有其它的USB事件产生,例如正确传输(不包括同步模式和双缓冲块模式)、USB复位等,事件标志位在USB_ISTR寄存器中。

在STM32的USB开发包的例子中包含了上述中断的处理,例如在USB扬声器的例子中,CTR_HP函数处理USB高优先级中断;在所有例子中都有USB_Istr()函数处理USB低优先级中断

使用特权

评论回复
板凳
想做大牛的小马| | 2014-7-29 16:18 | 只看该作者
本帖最后由 想做大牛的小马 于 2014-7-29 16:30 编辑

涨姿势了~

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

个人签名:好好学习,天天向上!

519

主题

4195

帖子

31

粉丝