/**
* @brief Configure the TIM1 Pins.
* @param None
* @retval None
*/
static void TIM_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* GPIOA Clocks enable */
RCC_AHBPeriphClockCmd( RCC_AHBPeriph_GPIOA, ENABLE);
/* GPIOA Configuration: Channel 1, 2, 3 and 4 as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP ;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource8, GPIO_AF_2);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource9, GPIO_AF_2);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource10, GPIO_AF_2);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource11, GPIO_AF_2);
/* TIM1 Configuration ---------------------------------------------------
Generate PWM signals with 4 different duty cycles:
TIM1 input clock (TIM1CLK) is set to APB2 clock (PCLK2)
=> TIM1CLK = PCLK2 = SystemCoreClock
TIM1CLK = SystemCoreClock, Prescaler = 0, TIM1 counter clock = SystemCoreClock
SystemCoreClock is set to 48 MHz for STM32F0xx devices
The objective is to generate 4 PWM signal at 17.57 KHz:
- TIM1_Period = (SystemCoreClock / 17570) - 1
The channel 1 and channel 1N duty cycle is set to 50%
The channel 2 and channel 2N duty cycle is set to 37.5%
The channel 3 and channel 3N duty cycle is set to 25%
The channel 4 duty cycle is set to 12.5%
The Timer pulse is calculated as follows:
- ChannelxPulse = DutyCycle * (TIM1_Period - 1) / 100
Note:
SystemCoreClock variable holds HCLK frequency and is defined in system_stm32f0xx.c file.
Each time the core clock (HCLK) changes, user had to call SystemCoreClockUpdate()
function to update SystemCoreClock variable value. Otherwise, any configuration
based on this variable will be incorrect.
----------------------------------------------------------------------- */
/* Compute the value to be set in ARR regiter to generate signal frequency at 17.57 Khz */
TimerPeriod = (SystemCoreClock / 17570 ) - 1;
/* Compute CCR1 value to generate a duty cycle at 50% for channel 1 */
Channel1Pulse = (uint16_t) (((uint32_t) 5 * (TimerPeriod - 1)) / 10);
/* Compute CCR2 value to generate a duty cycle at 37.5% for channel 2 */
Channel2Pulse = (uint16_t) (((uint32_t) 375 * (TimerPeriod - 1)) / 1000);
/* Compute CCR3 value to generate a duty cycle at 25% for channel 3 */
Channel3Pulse = (uint16_t) (((uint32_t) 25 * (TimerPeriod - 1)) / 100);
/* Compute CCR4 value to generate a duty cycle at 12.5% for channel 4 */
Channel4Pulse = (uint16_t) (((uint32_t) 125 * (TimerPeriod- 1)) / 1000);
/* TIM1 clock enable */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1 , ENABLE);
/* Time Base configuration */
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure.TIM_Period = TimerPeriod;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
/* Channel 1, 2, 3 and 4 Configuration in PWM mode */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;
TIM_OCInitStructure.TIM_Pulse = Channel1Pulse;
TIM_OC1Init(TIM1, &TIM_OCInitStructure);
TIM_OCInitStructure.TIM_Pulse = Channel2Pulse;
TIM_OC2Init(TIM1, &TIM_OCInitStructure);
TIM_OCInitStructure.TIM_Pulse = Channel3Pulse;
TIM_OC3Init(TIM1, &TIM_OCInitStructure);
TIM_OCInitStructure.TIM_Pulse = Channel4Pulse;
TIM_OC4Init(TIM1, &TIM_OCInitStructure);
/* TIM1 counter enable */
TIM_Cmd(TIM1, ENABLE);
/* TIM1 Main Output Enable */
TIM_CtrlPWMOutputs(TIM1, ENABLE);
}
|