假设两者周期都为T,正弦: ASin(2*PI*t/T)
方波: A t (0,T/2)
0 t(T/2,T)
则一个T内两者能量:
S(0,T)[(ASin(2*PI*t/T))^2*R*]Dt
由倍角公式(SinA)^2=(1-Cos2A)/2,则上式=S(0,T)[A^2*(1-Cos(2*PI*t/T))/2*R]Dt
=A^2/2*R{S(0,T) Dt -S(0,T)Cos(2*PI*t/T)Dt}
=A^2/2*R(T-[(-sin2Pi)-(-sina0)])
=A^2/2*R*T
方波就简单了
A^2*R*(T/2)
R一样的时候二者相等,即平均功率相等 |