PID的控制思想非常简单,其主要问题点和难点在于比例、积分、微分环节上的参数整定过程,对于执行器控制模型确定或者控制模型简单的系统而言,参数的整定可以通过计算获得,对于一般精度要求不是很高的执行器系统,可以采用拼凑的方法进行整定。
一:非线性系统的普遍性
在实际的控制系统中,线性系统毕竟是少数,大部分的系统属于非线性系统,或者说是系统模型不确定的系统,如果控制精度要求较高的话,那么对于参数的整定过程是有难度的。专家PID和模糊PID就是为满足这方面的需求而设计的。智能算法最大的优点就是在控制模型未知的情况下,可以对模型进行控制。专家系统和模糊算法是辅助PID进行参数整定的手段。其实我们前面已经用到了专家PID的一些特例行为了,我们前面讲到的积分分离等算法,通过对某些条件进行了局部的判定,如果偏差太大的话,就去除积分项,这本身就是含有经验的专家系统。
下面先说一下专家PID的C语言实现。正如前面所说,需要找到一些依据,还得从PID系数本身说起。
1.比例系数Kp的作用是加快系统的响应速度,提高系统的调节精度。Kp越大,系统的响应速度越快,系统的调节精度越高,但是容易产生超调,甚至会使系统不稳定。Kp取值过小,则会降低调节精度,使响应速度缓慢,从而延长调节时间,是系统静态、动态特性变差;
2.积分作用系数Ki的作用是消除系统的稳态误差。Ki越大,系统的静态误差消除的越快,但是Ki过大,在响应过程的初期会产生积分饱和的现象,从而引起响应过程的较大超调。若Ki过小,将使系统静态误差难以消除,影响系统的调节精度;
3.微分系数Kd的作用是改善系统的动态特性,其作用主要是在响应过程中抑制偏差向任何方向的变化,对偏差变化进行提前预报。但是kd过大,会使响应过程提前制动,从而延长调节时间,而且会降低系统的抗干扰性。
二:PID两个返馈系数的逻辑判断
反映线性PID系统的两个重要系数就是系统误差e和误差变化率ec,下面我们就这两个参数进行讨论。 首先我们规定一个误差的极限值,假设为Mmax;规定一个误差的比较大的值,假设为Mmid;规定一个误差的较小值,假设为Mmin;
(1)当abs(e)>Mmax时,说明误差的绝对值已经很大了,不论误差变化趋势如何,都应该考虑控制器的输入应按最大(或最小)输出,以达到迅速调整误差的效果,使误差绝对值以最大的速度减小。此时,相当于实施开环控制。(没有反馈)
(2)当e*ec>0时,说明误差在朝向误差绝对值增大的方向变化,此时,如果abs(e)>Mmid,说明误差也较大,可考虑由控制器实施较强的控制作用,以达到扭转误差绝对值向减小的方向变化,并迅速减小误差的绝对值。此时如果abs(e)<Mmid,说明尽管误差是向绝对值增大的方向变化,但是误差绝对值本身并不是很大,可以考虑控制器实施一般的控制作用,只需要扭转误差的变化趋势,使其向误差绝对值减小的方向变化即可。
(3)当e*err<0且e*err(k-1)>0或者e=0时,说明误差的绝对值向减小的方向变化,或者已经达到平衡状态,此时保持控制器输出不变即可。
(4)当e*err<0且e*err(k-1)<0时,说明误差处于极限状态。如果此时误差的绝对值较大,大于Mmin,可以考虑实施较强控制作用。如果此时误差绝对值较小,可以考虑实施较弱控制作用。
(5)当abs(e)<Mmin时,说明误差绝对值很小,此时加入积分,减小静态误差。
上面的逻辑判断过程,实际上就是对于控制系统的一个专家判断过程。
三:模糊算法的常识与智能调节
大部分的系统在一定的条件和范围内是可以抽象成为线性系统的。问题的关键是,当我们系统设计的范围超出了线性的范围,我们又该如何处理。其实,模糊PID适应一般的控制系统是没有问题。**接下来将说明模糊算法的一些基本常识。
模糊算法其实并不模糊(不要被它的名字所迷惑)。模糊算法其实也是逐次求精的过程。 这里举个例子说明。我们设计一个倒立摆系统,假如摆针偏差<5°,我们说它的偏差比较“小”;摆针偏差在5°和10°之间,我们说它的偏差处于“中”的状态;当摆针偏差>10°的时候,我们说它的偏差有点儿“大”了。对于“小”、“中”、“大”这样的词汇来讲,他们是精确的表述,可问题是如果摆针偏差是3°呢,那么这是一种什么样的状态呢。我们可以用“很小”来表述它。如果是7°呢,可以说它是“中”偏“小”。那么如果到了80°呢,它的偏差可以说“非常大”。而我们调节的过程实际上就是让系统的偏差由非常“大”逐渐向非常“小”过度的过程。当然,我们系统这个调节过程是快速稳定的。通过上面的说明,可以认识到,其实对于每一种状态都可以划分到大、中、小三个状态当中去,只不过他们的程度不太一样。我们最终的控制量肯定要落实在控制电压上。这点可以很容易的想想,我们控制的目的就是让倒立摆从隶属“大”的程度为1的状态,调节到隶属“小”的程度为1的状态。当”大“这个状态多一些的时候,我们就加快调节的速度,当”小“这个状态多一些的时候,我们就减慢调节的速度,进行微调。可问题是,大、中、小的状态是汉字,怎么用数字表示,进而用程序代码表示呢?其实我们可以给大、中、小三个状态设定三个数字来表示,比如大表示用3表示,中用2表示,小用1表示。那么我们完全可以用1*0.3+2*0.7+3*0.0=1.7来表示它,当然这个公式也不一定是这样的,亦可以是1*0.1+2*0.5+3*0.4=2.3。这个公式的设计是系统模糊化和精确化的一个过程。但就1.7这个数字而言,可以说明,目前6°的角度偏差处于小和中之间,但是更偏向于中。我们就可以根据这个数字来调节电机的转动速度和时间了。当然,这个数字与电机转速的对应关系,也需要根据实际情况进行设计和调节。
实际上,我们前面说到的模糊算法很浅显,真正的模糊算法是不能这么设计的,当然也不会这么简单。模糊算法的核心是模糊规则,如果模糊规则制定的出色,那么模糊算法的控制效率就高。也就是说,我们PID算法的制定需要根据你控制的系统来。
我们知道,模糊算法的本质是对PID的三个参数进行智能调节。 我们从作用和副作用两个方面说明参数对系统的影响: 1.比例环节Kp,作用是加快系统的响应速度,提高系统的调节精度,副作用是会导致超调; 2.积分环节Ki,作用是消除稳态误差,副作用是导致积分饱和现象; 3.微分环节Kd,作用是改善系统的动态性能,副作用是延长系统的调节时间。
比如说,如果系统响应速度慢,我们就加大Kp的取值,如果超调量过大我们就减小Kp的取值等等。可是问题这些语言的描述该如何用数学形式表达出来呢。我们所知道的,反馈系统的实质就是系统的输出量作为反馈量与系统的输入量进行作差,从而得到系统的误差e,那么这个误差e就能够反应目前系统所处的状态。误差e可以表明目前系统的输出状态到底偏离要求多少。而误差e的变化律ec,表示误差变化的速度。这样,我们可以根据这两个量的状态来分析三个参数此时应该如何取值,假如e为负方向比较大,ec也为负方向增大状态,此时比例环节要大一些,从而加快调节速度,而积分环节要小一些,甚至不加积分环节,从而防止负方向上出现饱和积分的现象。微分环节可以稍加一些,在不影响调节时间的情况下,起到改善系统动态性能的作用。
|