打印

FFT结果的物理意义

[复制链接]
19212|68
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
computer00|  楼主 | 2008-5-15 09:52 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
   FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如
果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱
提取出来,这在频谱分析方面也是经常用的。
    虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用
多少点来做FFT。
    现在圈圈就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样
定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。
    采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT
运算,通常N取2的整数次方。
    假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率
点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT
的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量
的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个
点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示
采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。
由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。
1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时
间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和
采样时间是倒数关系。
  假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,
就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:
         An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。
对于n=1点的信号,是直流分量,幅度即为A1/N。
    由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。
    好了,说了半天,看着公式也晕,下面圈圈以一个实际的信号来做说明。
    假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、
相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:
        S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)
    式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。
按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号
有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?
我们来看看FFT的结果的模值如图所示。

                      图1 FFT结果
    从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。我们分别将这三个点附近的数据拿上来细看:
1点: 512+0i
2点: -2.6195E-14 - 1.4162E-13i 
3点: -2.8586E-14 - 1.1898E-13i
50点:-6.2076E-13 - 2.1713E-12i
51点:332.55 - 192i
52点:-1.6707E-12 - 1.5241E-12i
75点:-2.2199E-13 -1.0076E-12i
76点:3.4315E-12 + 192i
77点:-3.0263E-14 +7.5609E-13i
   
    很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。
接着,我们来计算各点的幅度值。分别计算这三个点的模值,结果如下:
1点: 512
51点:384
76点:192
    按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的
幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。
    然后再来计算相位信息。直流信号没有相位可言,不用管它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,
结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,
换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。根据FFT结果以及上面的分析计算,我们就可以写出信号的表达
式了,它就是我们开始提供的信号。
    总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值
除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以);该点的相位即是对应该频率下的信号的相位。相位的计算
可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒
的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成
分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度
达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。具体的频率细分法可参考相关文献。
[附录:本测试数据使用的matlab程序]
close all; %先关闭所有图片
Adc=2;  %直流分量幅度
A1=3;   %频率F1信号的幅度
A2=1.5; %频率F2信号的幅度
F1=50;  %信号1频率(Hz)
F2=75;  %信号2频率(Hz)
Fs=256; %采样频率(Hz)
P1=-30; %信号1相位(度)
P2=90;  %信号相位(度)
N=256;  %采样点数
t=[0:1/Fs:N/Fs]; %采样时刻
%信号
S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);
%显示原始信号
plot(S);
title('原始信号');
figure;
Y = fft(S,N); %做FFT变换
Ayy = (abs(Y)); %取模
plot(Ayy(1:N)); %显示原始的FFT模值结果
title('FFT 模值');
figure;
Ayy=Ayy/(N/2);   %换算成实际的幅度
Ayy(1)=Ayy(1)/2;
F=([1:N]-1)*Fs/N; %换算成实际的频率值
plot(F(1:N/2),Ayy(1:N/2));   %显示换算后的FFT模值结果
title('幅度-频率曲线图');
figure;
Pyy=[1:N/2];
for i="1:N/2"
 Pyy(i)=phase(Y(i)); %计算相位
 Pyy(i)=Pyy(i)*180/pi; %换算为角度
end;
plot(F(1:N/2),Pyy(1:N/2));   %显示相位图
title('相位-频率曲线图');
                          (By  computer00   @2008-05-15)

相关帖子

沙发
dld2| | 2008-5-15 10:20 | 只看该作者

顶圈圈

回头再看。

使用特权

评论回复
板凳
computer00|  楼主 | 2008-5-15 10:38 | 只看该作者

FFT最后计算出来的相位,是以cos为参考的。

例如计算出来的结果如果只有实部,那么相位结果应该是0度,就是cos(wt)。
当然,相位本身是相对的,FFT计算的结果是以第一个采样点为参考点的。
至于你的相位计算方法是否正确,你可以用一个实际的、已知的信号来做测试,
然后再看你的结果是否正确。我帖中也写得很清楚了,如何去计算一个相位。

使用特权

评论回复
地板
sz_kd| | 2008-5-15 11:14 | 只看该作者

好东西,顶

使用特权

评论回复
5
ahong007| | 2008-5-15 16:21 | 只看该作者

谢谢圈圈,真是好东西

使用特权

评论回复
6
程序匠人| | 2009-3-8 10:14 | 只看该作者

迟来的裤子

使用特权

评论回复
7
sssbang| | 2009-3-17 16:00 | 只看该作者

嗯不错,现在差不多都还给老师了

使用特权

评论回复
8
TI_CPIC| | 2009-3-17 16:03 | 只看该作者

顶,好东西

使用特权

评论回复
9
happytoday| | 2009-3-30 17:16 | 只看该作者

好贴要顶

使用特权

评论回复
10
luowei2651| | 2009-4-4 09:48 | 只看该作者

顶下

好东西,要留着看!!

使用特权

评论回复
11
cambwang| | 2009-4-20 21:56 | 只看该作者

顶OO

使用特权

评论回复
12
sdqdhx| | 2009-5-27 17:09 | 只看该作者

请教圈圈关于FFt计算的问题

   读了您的大作很有收获,谢谢。
   我还有一个问题不太明白,希望能指教:
   对于20K的信号,我想FFT后的分辨精度为1HZ,这样要求采样率至少为40K,而采样点也要40K个,对于这样大的采样点,FFT还能计算过来了吗?我查TI的FFT资料,最常见的也就是128、256、512和1024,对于40K个点的FFT用型号为TMS320F2812的芯片还能计算的出来吗?

使用特权

评论回复
13
computer00|  楼主 | 2009-5-31 15:48 | 只看该作者

计算是肯定可以的,就是需要耗费很多的RAM和采样及计算时

通常很少用这么多的采样点来计算(当然如果本来速度要求不高的话就无所谓了)。如果只对某些点的频率感兴趣,可以去找找FFT的细分法。

使用特权

评论回复
14
jack_shine| | 2010-9-27 13:36 | 只看该作者
看的人多,发表意见的少,真是一个技术好帖呀,留着先,待慢慢研究~~~:)

使用特权

评论回复
15
arthur02| | 2011-1-17 20:31 | 只看该作者
很不错,技术强帖

使用特权

评论回复
16
suixiaodong| | 2011-1-30 11:02 | 只看该作者
好帖子

使用特权

评论回复
17
caicai_| | 2011-2-11 17:20 | 只看该作者
果断Mark之

使用特权

评论回复
18
lqb888| | 2011-2-25 16:52 | 只看该作者
技术贴就是好啊

使用特权

评论回复
19
reins515| | 2011-2-26 15:44 | 只看该作者
好技术,学习了,感谢楼主详细解说,拜读了

使用特权

评论回复
20
海天一色| | 2011-6-24 06:35 | 只看该作者
收藏了

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

246

主题

14693

帖子

210

粉丝