/****************************************************************************
* [url=home.php?mod=space&uid=288409]@file[/url] main.c
* [url=home.php?mod=space&uid=895143]@version[/url] V2.0
* $Revision: 2 $
* $Date: 14/12/25 10:24a $
* [url=home.php?mod=space&uid=247401]@brief[/url] Monitor the conversion result of channel 2 by the digital compare function.
* @note
* Copyright (C) 2014 Nuvoton Technology Corp. All rights reserved.
*
******************************************************************************/
#include <stdio.h>
#include "M0518.h"
#define PLL_CLOCK 50000000
/*---------------------------------------------------------------------------------------------------------*/
/* Define Function Prototypes */
/*---------------------------------------------------------------------------------------------------------*/
void SYS_Init(void);
void UART0_Init(void);
void AdcResultMonitorTest(void);
/*---------------------------------------------------------------------------------------------------------*/
/* Define global variables and constants */
/*---------------------------------------------------------------------------------------------------------*/
volatile uint32_t g_u32AdcCmp0IntFlag;
volatile uint32_t g_u32AdcCmp1IntFlag;
void SYS_Init(void)
{
/*---------------------------------------------------------------------------------------------------------*/
/* Init System Clock */
/*---------------------------------------------------------------------------------------------------------*/
/* Enable Internal RC 22.1184MHz clock */
CLK_EnableXtalRC(CLK_PWRCON_OSC22M_EN_Msk);
/* Waiting for Internal RC clock ready */
CLK_WaitClockReady(CLK_CLKSTATUS_OSC22M_STB_Msk);
/* Switch HCLK clock source to Internal RC and HCLK source divide 1 */
CLK_SetHCLK(CLK_CLKSEL0_HCLK_S_HIRC, CLK_CLKDIV_HCLK(1));
/* Enable external XTAL 12MHz clock */
CLK_EnableXtalRC(CLK_PWRCON_XTL12M_EN_Msk);
/* Waiting for external XTAL clock ready */
CLK_WaitClockReady(CLK_CLKSTATUS_XTL12M_STB_Msk);
/* Set core clock as PLL_CLOCK from PLL */
CLK_SetCoreClock(PLL_CLOCK);
/* Enable UART module clock */
CLK_EnableModuleClock(UART0_MODULE);
/* Enable ADC module clock */
CLK_EnableModuleClock(ADC_MODULE);
/* Select UART module clock source */
CLK_SetModuleClock(UART0_MODULE, CLK_CLKSEL1_UART_S_PLL, CLK_CLKDIV_UART(1));
/* ADC clock source is 22.1184MHz, set divider to 7, ADC clock is 22.1184/7 MHz */
CLK_SetModuleClock(ADC_MODULE, CLK_CLKSEL1_ADC_S_HIRC, CLK_CLKDIV_ADC(7));
/*---------------------------------------------------------------------------------------------------------*/
/* Init I/O Multi-function */
/*---------------------------------------------------------------------------------------------------------*/
/* Set GPB multi-function pins for UART0 RXD and TXD */
SYS->GPB_MFP &= ~(SYS_GPB_MFP_PB0_Msk | SYS_GPB_MFP_PB1_Msk);
SYS->GPB_MFP |= SYS_GPB_MFP_PB0_UART0_RXD | SYS_GPB_MFP_PB1_UART0_TXD;
/* Disable the GPA0 - GPA3 digital input path to avoid the leakage current. */
GPIO_DISABLE_DIGITAL_PATH(PA, 0xF);
/* Configure the GPA0 - GPA3 ADC analog input pins */
SYS->GPA_MFP &= ~(SYS_GPA_MFP_PA0_Msk | SYS_GPA_MFP_PA1_Msk | SYS_GPA_MFP_PA2_Msk | SYS_GPA_MFP_PA3_Msk) ;
SYS->GPA_MFP |= SYS_GPA_MFP_PA0_ADC0 | SYS_GPA_MFP_PA1_ADC1 | SYS_GPA_MFP_PA2_ADC2 | SYS_GPA_MFP_PA3_ADC3 ;
}
/*---------------------------------------------------------------------------------------------------------*/
/* Init UART */
/*---------------------------------------------------------------------------------------------------------*/
void UART0_Init()
{
/* Reset IP */
SYS_ResetModule(UART0_RST);
/* Configure UART0 and set UART0 Baudrate */
UART_Open(UART0, 115200);
}
/*---------------------------------------------------------------------------------------------------------*/
/* Function: AdcResultMonitorTest */
/* */
/* Parameters: */
/* None. */
/* */
/* Returns: */
/* None. */
/* */
/* Description: */
/* ADC result monitor function test. */
/*---------------------------------------------------------------------------------------------------------*/
void AdcResultMonitorTest()
{
printf("\n");
printf("+----------------------------------------------------------------------+\n");
printf("| ADC compare function (result monitor) sample code |\n");
printf("+----------------------------------------------------------------------+\n");
printf("\nIn this test, software will compare the conversion result of channel 2.\n");
/* Set the ADC operation mode as continuous scan, input mode as single-end and enable the analog input channel 2 */
ADC_Open(ADC, ADC_ADCR_DIFFEN_SINGLE_END, ADC_ADCR_ADMD_CONTINUOUS, 0x1 << 2);
/* Power on ADC module */
ADC_POWER_ON(ADC);
/* Enable ADC comparator 0. Compare condition: conversion result < 0x800; match Count=5. */
printf(" Set the compare condition of comparator 0: channel 2 is less than 0x800; match count is 5.\n");
ADC_ENABLE_CMP0(ADC, 2, ADC_ADCMPR_CMPCOND_LESS_THAN, 0x800, 5);
/* Enable ADC comparator 1. Compare condition: conversion result >= 0x800; match Count=5. */
printf(" Set the compare condition of comparator 1: channel 2 is greater than or equal to 0x800; match count is 5.\n");
ADC_ENABLE_CMP1(ADC, 2, ADC_ADCMPR_CMPCOND_GREATER_OR_EQUAL, 0x800, 5);
/* Clear the ADC comparator 0 interrupt flag for safe */
ADC_CLR_INT_FLAG(ADC, ADC_CMP0_INT);
/* Enable ADC comparator 0 interrupt */
ADC_EnableInt(ADC, ADC_CMP0_INT);
/* Clear the ADC comparator 1 interrupt flag for safe */
ADC_CLR_INT_FLAG(ADC, ADC_CMP1_INT);
/* Enable ADC comparator 1 interrupt */
ADC_EnableInt(ADC, ADC_CMP1_INT);
NVIC_EnableIRQ(ADC_IRQn);
g_u32AdcCmp0IntFlag = 0;
g_u32AdcCmp1IntFlag = 0;
/* Clear the ADC interrupt flag */
ADC_CLR_INT_FLAG(ADC, ADC_ADF_INT);
/* Start A/D conversion */
ADC_START_CONV(ADC);
/* Wait ADC compare interrupt */
while((g_u32AdcCmp0IntFlag == 0) && (g_u32AdcCmp1IntFlag == 0));
/* Stop A/D conversion */
ADC_STOP_CONV(ADC);
/* Disable ADC comparator interrupt */
ADC_DisableInt(ADC, ADC_CMP0_INT);
ADC_DisableInt(ADC, ADC_CMP1_INT);
/* Disable compare function */
ADC_DISABLE_CMP0(ADC);
ADC_DISABLE_CMP1(ADC);
if(g_u32AdcCmp0IntFlag == 1)
{
printf("Comparator 0 interrupt occurs.\nThe conversion result of channel 2 is less than 0x800\n");
}
else
{
printf("Comparator 1 interrupt occurs.\nThe conversion result of channel 2 is greater than or equal to 0x800\n");
}
}
/*---------------------------------------------------------------------------------------------------------*/
/* ADC interrupt handler */
/*---------------------------------------------------------------------------------------------------------*/
void ADC_IRQHandler(void)
{
if(ADC_GET_INT_FLAG(ADC, ADC_CMP0_INT) != 0)
{
g_u32AdcCmp0IntFlag = 1;
ADC_CLR_INT_FLAG(ADC, ADC_CMP0_INT); /* clear the A/D compare flag 0 */
}
if(ADC_GET_INT_FLAG(ADC, ADC_CMP1_INT) != 0)
{
g_u32AdcCmp1IntFlag = 1;
ADC_CLR_INT_FLAG(ADC, ADC_CMP1_INT); /* clear the A/D compare flag 1 */
}
}
/*---------------------------------------------------------------------------------------------------------*/
/* MAIN function */
/*---------------------------------------------------------------------------------------------------------*/
int main(void)
{
/* Unlock protected registers */
SYS_UnlockReg();
/* Init System, IP clock and multi-function I/O */
SYS_Init();
/* Lock protected registers */
SYS_LockReg();
/* Init UART0 for printf */
UART0_Init();
/*---------------------------------------------------------------------------------------------------------*/
/* SAMPLE CODE */
/*---------------------------------------------------------------------------------------------------------*/
printf("\nSystem clock rate: %d Hz", SystemCoreClock);
/* Result monitor test */
AdcResultMonitorTest();
/* Disable ADC module */
ADC_Close(ADC);
/* Disable ADC IP clock */
CLK_DisableModuleClock(ADC_MODULE);
/* Disable External Interrupt */
NVIC_DisableIRQ(ADC_IRQn);
printf("\nExit ADC sample code\n");
while(1);
}
|