/****************************************************************************
* [url=home.php?mod=space&uid=288409]@file[/url] main.c
* [url=home.php?mod=space&uid=895143]@version[/url] V2.0
* $Revision: 2 $
* $Date: 14/12/25 10:24a $
* [url=home.php?mod=space&uid=247401]@brief[/url] Perform A/D Conversion with ADC single mode.
* @note
* Copyright (C) 2014 Nuvoton Technology Corp. All rights reserved.
*
******************************************************************************/
#include <stdio.h>
#include "M0518.h"
#define PLL_CLOCK 50000000
/*---------------------------------------------------------------------------------------------------------*/
/* Define Function Prototypes */
/*---------------------------------------------------------------------------------------------------------*/
void SYS_Init(void);
void UART0_Init(void);
void AdcSingleModeTest(void);
/*---------------------------------------------------------------------------------------------------------*/
/* Define global variables and constants */
/*---------------------------------------------------------------------------------------------------------*/
volatile uint32_t g_u32AdcIntFlag;
void SYS_Init(void)
{
/*---------------------------------------------------------------------------------------------------------*/
/* Init System Clock */
/*---------------------------------------------------------------------------------------------------------*/
/* Enable Internal RC 22.1184MHz clock */
CLK_EnableXtalRC(CLK_PWRCON_OSC22M_EN_Msk);
/* Waiting for Internal RC clock ready */
CLK_WaitClockReady(CLK_CLKSTATUS_OSC22M_STB_Msk);
/* Switch HCLK clock source to Internal RC and HCLK source divide 1 */
CLK_SetHCLK(CLK_CLKSEL0_HCLK_S_HIRC, CLK_CLKDIV_HCLK(1));
/* Enable external XTAL 12MHz clock */
CLK_EnableXtalRC(CLK_PWRCON_XTL12M_EN_Msk);
/* Waiting for external XTAL clock ready */
CLK_WaitClockReady(CLK_CLKSTATUS_XTL12M_STB_Msk);
/* Set core clock as PLL_CLOCK from PLL */
CLK_SetCoreClock(PLL_CLOCK);
/* Enable UART module clock */
CLK_EnableModuleClock(UART0_MODULE);
/* Enable ADC module clock */
CLK_EnableModuleClock(ADC_MODULE);
/* Select UART module clock source */
CLK_SetModuleClock(UART0_MODULE, CLK_CLKSEL1_UART_S_PLL, CLK_CLKDIV_UART(1));
/* ADC clock source is 22.1184MHz, set divider to 7, ADC clock is 22.1184/7 MHz */
CLK_SetModuleClock(ADC_MODULE, CLK_CLKSEL1_ADC_S_HIRC, CLK_CLKDIV_ADC(7));
/*---------------------------------------------------------------------------------------------------------*/
/* Init I/O Multi-function */
/*---------------------------------------------------------------------------------------------------------*/
/* Set GPB multi-function pins for UART0 RXD and TXD */
SYS->GPB_MFP &= ~(SYS_GPB_MFP_PB0_Msk | SYS_GPB_MFP_PB1_Msk);
SYS->GPB_MFP |= SYS_GPB_MFP_PB0_UART0_RXD | SYS_GPB_MFP_PB1_UART0_TXD;
/* Disable the GPA0 - GPA3 digital input path to avoid the leakage current. */
GPIO_DISABLE_DIGITAL_PATH(PA, 0xF);
/* Configure the GPA0 - GPA3 ADC analog input pins */
SYS->GPA_MFP &= ~(SYS_GPA_MFP_PA0_Msk | SYS_GPA_MFP_PA1_Msk | SYS_GPA_MFP_PA2_Msk | SYS_GPA_MFP_PA3_Msk) ;
SYS->GPA_MFP |= SYS_GPA_MFP_PA0_ADC0 | SYS_GPA_MFP_PA1_ADC1 | SYS_GPA_MFP_PA2_ADC2 | SYS_GPA_MFP_PA3_ADC3 ;
}
/*---------------------------------------------------------------------------------------------------------*/
/* Init UART */
/*---------------------------------------------------------------------------------------------------------*/
void UART0_Init()
{
/* Reset IP */
SYS_ResetModule(UART0_RST);
/* Configure UART0 and set UART0 Baudrate */
UART_Open(UART0, 115200);
}
/*---------------------------------------------------------------------------------------------------------*/
/* Function: AdcSingleModeTest */
/* */
/* Parameters: */
/* None. */
/* */
/* Returns: */
/* None. */
/* */
/* Description: */
/* ADC single mode test. */
/*---------------------------------------------------------------------------------------------------------*/
void AdcSingleModeTest()
{
uint8_t u8Option;
int32_t i32ConversionData;
printf("\n");
printf("+----------------------------------------------------------------------+\n");
printf("| ADC single mode sample code |\n");
printf("+----------------------------------------------------------------------+\n");
while(1)
{
printf("Select input mode:\n");
printf(" [1] Single end input (channel 2 only)\n");
printf(" [2] Differential input (channel pair 1 only)\n");
printf(" Other keys: exit single mode test\n");
u8Option = getchar();
if(u8Option == '1')
{
/* Set the ADC operation mode as single, input mode as single-end and enable the analog input channel 2 */
ADC_Open(ADC, ADC_ADCR_DIFFEN_SINGLE_END, ADC_ADCR_ADMD_SINGLE, 0x1 << 2);
/* Power on ADC module */
ADC_POWER_ON(ADC);
/* Clear the A/D interrupt flag for safe */
ADC_CLR_INT_FLAG(ADC, ADC_ADF_INT);
/* Enable the ADC interrupt */
ADC_EnableInt(ADC, ADC_ADF_INT);
NVIC_EnableIRQ(ADC_IRQn);
/* Reset the ADC interrupt indicator and Start A/D conversion */
g_u32AdcIntFlag = 0;
ADC_START_CONV(ADC);
/* Wait ADC interrupt (g_u32AdcIntFlag will be set at IRQ_Handler function)*/
while(g_u32AdcIntFlag == 0);
/* Disable the ADC interrupt */
ADC_DisableInt(ADC, ADC_ADF_INT);
/* Get the conversion result of the ADC channel 2 */
i32ConversionData = ADC_GET_CONVERSION_DATA(ADC, 2);
printf("Conversion result of channel 2: 0x%X (%d)\n\n", i32ConversionData, i32ConversionData);
}
else if(u8Option == '2')
{
/* Set the ADC operation mode as single, input mode as differential and
enable analog input channel 2 for differential input channel pair 1 */
ADC_Open(ADC, ADC_ADCR_DIFFEN_DIFFERENTIAL, ADC_ADCR_ADMD_SINGLE, 0x1 << 2);
/* Power on ADC module */
ADC_POWER_ON(ADC);
/* Clear the A/D interrupt flag for safe */
ADC_CLR_INT_FLAG(ADC, ADC_ADF_INT);
/* Enable the ADC interrupt */
ADC_EnableInt(ADC, ADC_ADF_INT);
NVIC_EnableIRQ(ADC_IRQn);
/* Reset the ADC interrupt indicator and Start A/D conversion */
g_u32AdcIntFlag = 0;
ADC_START_CONV(ADC);
/* Wait ADC interrupt (g_u32AdcIntFlag will be set at IRQ_Handler function)*/
while(g_u32AdcIntFlag == 0);
/* Disable the ADC interrupt */
ADC_DisableInt(ADC, ADC_ADF_INT);
/* Get the conversion result of the specified ADC channel */
i32ConversionData = ADC_GET_CONVERSION_DATA(ADC, 2);
printf("Conversion result of channel pair 1: 0x%X (%d)\n\n", i32ConversionData, i32ConversionData);
}
else
return ;
}
}
/*---------------------------------------------------------------------------------------------------------*/
/* ADC interrupt handler */
/*---------------------------------------------------------------------------------------------------------*/
void ADC_IRQHandler(void)
{
g_u32AdcIntFlag = 1;
ADC_CLR_INT_FLAG(ADC, ADC_ADF_INT); /* clear the A/D conversion flag */
}
/*---------------------------------------------------------------------------------------------------------*/
/* MAIN function */
/*---------------------------------------------------------------------------------------------------------*/
int main(void)
{
/* Unlock protected registers */
SYS_UnlockReg();
/* Init System, IP clock and multi-function I/O */
SYS_Init();
/* Lock protected registers */
SYS_LockReg();
/* Init UART0 for printf */
UART0_Init();
/*---------------------------------------------------------------------------------------------------------*/
/* SAMPLE CODE */
/*---------------------------------------------------------------------------------------------------------*/
printf("\nSystem clock rate: %d Hz", SystemCoreClock);
/* Single Mode test */
AdcSingleModeTest();
/* Disable ADC module */
ADC_Close(ADC);
/* Disable ADC IP clock */
CLK_DisableModuleClock(ADC_MODULE);
/* Disable External Interrupt */
NVIC_DisableIRQ(ADC_IRQn);
printf("\nExit ADC sample code\n");
while(1);
}
|