打印
[资料分享]

【转】超强PCB布线设计经验谈附原理图

[复制链接]
808|2
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
南国先生|  楼主 | 2016-10-23 12:51 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

在当今激烈竞争的电池供电 市场中,由于成本指标限制,设计人员常常使用双面板。尽管多层板(4层、6层及8层)方案在尺寸、噪声和性能方面具有明显优势,成本压力却促使工程师们重新考虑其布线策略,采用双面板。在本文中,我们将讨论自动布线功能的正确使用和错误使用,有无地平面时电流回路的设计策略,以及对双面板元件布局的建议。
自动布线的优缺点以及模拟电路布线的注意事项
设计PCB时,往往很想使用自动布线。通常,纯数字的电路板(尤其信号电平比较低,电路密度比较小时)采用自动布线是没有问题的。但是,在设计模拟、混合信号或高速电路板时,如果采用布线软件的自动布线工具,可能会出现一些问题,甚至很可能带来严重的电路性能问题。
例如,图1中显示了一个采用自动布线设计的双面板的顶层。此双面板的底层如图2所示,这些布线层的电路原理图如图3a和图3b所示。设计此混合信号电路板时,经仔细考虑,将器件手工放在板上,以便将数字和模拟器件分开放置。
采用这种布线方案时,有几个方面需要注意,但最麻烦的是接地。如果在顶层布地线,则顶层的器件都通过走线接地。器件还在底层接地,顶层和底层的地线通过 电路板最右侧的过孔连接。当检查这种布线策略时,首先发现的弊端是存在多个地环路。另外,还会发现底层的地线返回路径被水平信号线隔断了。这种接地方案的可取之处是,模拟器件(12位A/D转换器MCP3202和2.5V参考电压源MCP4125)放在电路板的最右侧,这种布局确保了这些模拟芯片下面不会有数字地信号经过。
图3a和图3b所示电路的手工布线如图4、图5所示。在手工布线时,为确保正确实现电路,需要遵循一些通用的设计 准则:尽量采用地平面作为电流回路;将模拟地平面和数字地平面分开;如果地平面被信号走线隔断,为降低对地电流回路的干扰,应使信号走线与地平面垂直;模拟电路尽量靠近电路板边缘放置,数字电路尽量靠近电源连接端放置,这样做可以降低由数字开关引起的di/dt效应。
这两种双面板都在底层布有地平面,这种做法是为了方便工程师解决问题,使其可快速明了电路板的布线。厂商的演示板和评估板通常采用这种布线策略。但是,更为普遍的做法是将地平面布在电路板顶层,以降低电磁干扰。



图1 采用自动布线为图3所示电路原理图设计的电路板的顶层



图2 采用自动布线为图3所示电路原理图设计的电路板的底层



图3a 图1、图2、图4和图5中布线的电路原理图



图3b 图1、图2、图4和图5中布线的模拟部分电路原理图
有无地平面时的电流回路设计
对于电流回路,需要注意如下基本事项:
1. 如果使用走线,应将其尽量加粗
PCB上的接地连接如要考虑走线时,设计应将走线尽量加粗。这是一个好的经验法则,但要知道,接地线的最小宽度是从此点到末端的有效宽度,此处“末端”指距离电源连接端最远的点。
2. 应避免地环路
3. 如果不能采用地平面,应采用星形连接策略(见图6)
通过这种方法,地电流独立返回电源连接端。图6中,注意到并非所有器件都有自己的回路,U1和U2是共用回路的。如遵循以下第4条和第5条准则,是可以这样做的。
4. 数字电流不应流经模拟器件
数字器件开关时,回路中的数字电流相当大,但只是瞬时的,这种现象是由地线的有效感抗和阻抗引起的。对于地平面或接地走线的感抗部分,计算公式为V = Ldi/dt,其中V是产生的电压,L是地平面或接地走线的感抗,di是数字器件的电流变化,dt是持续时间。对地线阻抗部分的影响,其计算公式为V= RI, 其中,V是产生的电压,R是地平面或接地走线的阻抗,I是由数字器件引起的电流变化。经过模拟器件的地平面或接地走线上的这些电压变化,将改变信号链中信 号和地之间的关系(即信号的对地电压)。
5. 高速电流不应流经低速器件
与上述类似,高速电路的地返回信号也会 造成地平面的电压发生变化。此干扰的计算公式和上述相同,对于地平面或接地走线的感抗,V = Ldi/dt ;对于地平面或接地走线的阻抗,V = RI 。与数字电流一样,高速电路的地平面或接地走线经过模拟器件时,地线上的电压变化会改变信号链中信号和地之间的关系。



图4 采用手工走线为图3所示电路原理图设计的电路板的顶层



图5 采用手工走线为图3所示电路原理图设计的电路板的底层



图6 如果不能采用地平面,可以采用“星形”布线策略来处理电流回路



图7 分隔开的地平面有时比连续的地平面有效,图b)接地布线策略比图a) 的接地策略理想
6. 不管使用何种技术,接地回路必须设计为最小阻抗和容抗
7. 如使用地平面,分隔开地平面可能改善或降低电路性能,因此要谨慎使用
分开模拟和数字地平面的有效方法如图7所示
图7中,精密模拟电路更靠近接插件,但是与数字网络和电源电路的开关电流隔离开了。这是分隔开接地回路的非常有效的方法,我们在前面讨论的图4和图5的布线也采用了这种技术。


相关帖子

沙发
南国先生|  楼主 | 2016-10-23 12:58 | 只看该作者

超强PCB布线设计经验谈附原理图(三)

布线需要考虑的问题很多,但是最基本的的还是要做到周密,谨慎。
寄生元件危害最大的情况
印刷电路板布线产生的主要寄生元件包括:寄生电阻、寄生电容和寄生电感。例如:PCB的寄生电阻由元件之间的走线形成;电路板上的走线、焊盘和平行走线会产生寄生电容;寄生电感的产生途径包括环路电感、互感和过孔。当将电路原理图转化为实际的PCB时,所有这些寄生元件都可能对电路的有效性产生干扰。本文将对最棘手的电路板寄生元件类型 — 寄生电容进行量化,并提供一个可清楚看到寄生电容对电路性能影响的示例。


图1 在PCB上布两条靠近的走线,很容易产生寄生电容。由于这种寄生电容的存在,在一条走线上的快速电压变化会在另一条走线上产生电流信号。


图2 用三个8位数字电位器和三个放大器提供65536个差分输出电压,组成一个16位D/A转换器。如果系统中的VDD为5V,那么此D/A转换器的分辨率或LSB大小为76.3mV。


图3 这是对图2所示电路的第一次布线尝试。此配置在模拟线路上产生不规律的噪声,这是因为在特定数字走线上的数据输入码随着数字电位器的编程需求而改变。
寄生电容的危害
大多数寄生电容都是靠近放置两条平行走线引起的。可以采用图1所示的公式来计算这种电容值。
在混合信号电路中,如果敏感的高阻抗模拟走线与数字走线距离较近,这种电容会产生问题。例如,图2中的电路就很可能存在这种问题。
为讲解图2所示电路的工作原理,采用三个8位数字电位器和三个CMOS运算放大器组成一个16位D/A转换器。在此图的左侧,在VDD和地之间跨接了两 个数字电位器(U3a和U3b),其抽头输出连接到两个运放(U4a和U4b)的正相输入端。数字电位器U2和U3通过与单片机(U1)之间的SPI接口 编程。在此配置中,每个数字电位器配置为8位乘法型D/A转换器。如果VDD为5V,那么这些D/A转换器的LSB大小等于19.61mV。
这两个数字电位器的抽头都分别连接到两个配置了缓冲器的运放的正相输入端。在此配置中,运放的输入端是高阻抗的,将数字电位器与电路其它部分隔离开了。这两个放大器配置为其输出摆幅限制不会超出第二级放大器的输入范围。


图 4 在此示波器照片中,最上面的波形取自JP1(到数字电位器的数字码),第二个波形取自JP5(相邻模拟走线上的噪声),最下面的波形取自TP10(16位D/A转换器输出端的噪声)。


图5 采用这种新的布线,将模拟线路和数字线路隔离开了。增大走线之间的距离,基本消除了在前面布线中造成干扰的数字噪声。


图 6 图中示出了采用新布线的16位D/A转换器的单个码转换结果,对数字电位器编程的数字信号没有造成数字噪声。
为使此电路具有16位D/A转换器的性能,采用第三个数字电位器(U2a)跨接在两个运放(U4a和U4b)的输出端之间。U3a和U3b的编程设定经 数字电位器后的电压值。如果VDD为5V,可以将U3a和U3b的输出编程为相差19.61mV。此电压大小经第三个8位数字电位器R3,则自左至右整个 电路的LSB大小为76.3mV。此电路获得最优性能所需的严格器件规格如表1所示。
此电路有两种基本工作模式。第一种模式可用于获 得可编程、可调节的直流差分电压。在此模式中,电路的数字部分只是偶尔使用,在正常工作时不使用。第二种模式是可以将此电路用作任意波形发生器。在此模式中,电路的数字部分是电路运行的必需部分。此模式中可能发生电容耦合的危险。
图2所示电路的第一次布线如图3所示。此电路是在实验室中快速设计出的,没有注意细节。在检查布线时,发现将数字走线布在了高阻抗模拟线路的旁边。需要强调的是,第一次就应该正确布线,本文的目的是为了讲解如何识别问题及如何对布线做重大改进。
看一下此布线中不同的走线,可以明显看到哪里可能存在问题。图中的模拟走线从U3a的抽头连接到U4a放大器的高阻抗输入端。图中的数字走线传送对数字电位器设置进行编程的数字码。
在测试板上经过测量,发现数字走线中的数字信号耦合到了敏感的模拟走线中,参见图4。
系统中对数字电位器编程的数字信号沿着走线逐渐传输到输出直流电压的模拟线路。此噪声通过电路的模拟部分一直传播到第三个数字电位器(U5a)。第三个数字电位器在两个输出状态之间翻转。解决这个问题的方法主要是分隔开走线,图5示出了改进的布线方案。
改变布线的结果如图6所示。将模拟和数字走线仔细分开后,电路成为非常“干净”的16位D/A转换器。图中的波形是第三个数字电位器的单码转换结果76.29mV。
结语
数字和模拟范围确定后,谨慎布线对获得成功的PCB是至关重要的。尤其是有源数字走线靠近高阻抗模拟走线时,会引起严重的耦合噪声,这只能通过增加走线之间的距离来避免。




使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

68

主题

160

帖子

3

粉丝