打印
[资料分享]

TI电源设计小贴士11&12:解决电源电路损耗问题

[复制链接]
579|3
手机看帖
扫描二维码
随时随地手机跟帖
沙发
xyz549040622|  楼主 | 2017-4-25 22:25 | 只看该作者
电源设计小贴士 11:解决电源电路损耗问题
作者:Robert Kollman,德州仪器 (TI)
您是否曾详细计算过设计中的预计组件损耗,结果却发现与实验室测量结果有较大出入呢?本电源设计小贴士介绍了一种简便方法,以帮助您消除计算结果与实际测量结果之间的差异。该方法基于泰勒级数展开式,其中规定(在赋予一定自由条件下)任何函数都可分解成一个多项式,如下所示:
如果意识到电源损耗与输出电流相关(可用输出电流替换 X),那么系数项就能很好地与不同来源的电源功率损耗联系起来。例如,ao 代表诸如栅极驱动、偏压电源和磁芯的固定开销损耗以及功率晶体管 Coss 充电与放电之类的损耗。这些损耗与输出电流无关。第二项相关联的损耗 a1 直接与输出电流相关,其典型表现为输出二极管损耗和开关损耗。在输出二极管中,大多数损耗是由于结电压引起的,因此损耗会随着输出电流成比例地增加。
类似地,开关损耗可通过输出电流关联项与某些固定电压的乘积近似得出。第三项很容易被识别为传导损耗。其典型表现为 FET 电阻、磁性布线电阻和互联电阻中的损耗。高阶项可能在计算非线性损耗(如磁芯损耗)时有用。只有在考虑前三项情况下才能得出有用结果。
计算三项系数的一种方法是测量三个工作点的损耗并成矩阵求解结果。如果损耗测量结果其中一项是在无负载的工况下得到(即所有损耗均等于第一项系数 a0),那么就能简化该解决方法。随后问题简化至容易求解的两个方程式和两个未知数。一旦计算出系数,即可构建出类似于图 1、显示三种损耗类型的损耗曲线。该曲线在消除测量结果和计算结果之间的偏差时大有用处,并且有助于确定能够提高效率的潜在区域。例如,在满负载工况下,图 1 中的损耗主要为传导损耗。为了提高效率,就需要降低 FET 电阻、电感电阻和互联电阻。
图1:功率损耗组件与二次项系数相匹配
实际损耗与三项式之间的相关性非常好。图 2 对同步降压稳压器的测量数据与曲线拟合数据进行了对比。我们知道,在基于求解三个联立方程组的曲线上将存在三个重合点。对于曲线的剩余部分,两个曲线之间的差异小于2%。由于工作模式(如连续或非连续)不同、脉冲跳频或变频运行等原因,其他类型的电源可能很难以如此匹配。这种方法并非绝对可靠,但是有助于电源设计人员理解实际电路损耗情况。
图2 前三个损耗项提供了与测量值良好的相关性

使用特权

评论回复
板凳
xyz549040622|  楼主 | 2017-4-25 22:26 | 只看该作者
电源设计小贴士12:电源效率最大化
作者:德州仪器 (TI) 高级应用经理 Robert Kollman
在《电源设计小贴士 11》中,我们讨论了如何利用泰勒级数 (Taylor series) 查找电源中的损耗源。在本篇电源设计小贴士中,我们将讨论如何使用相同的级数最大化特定负载电流的电源效率。在《电源设计小贴士 11》中,我们建议使用如下输出电流函数来计算电源损耗:
下一步是利用上述简单表达式,并将其放入效率方程式中:
这样,输出电流的效率就得到了优化(具体论证工作留给学生去完成)。这种优化可产生一个有趣的结果。
当输出电流等于如下表达式时,效率将会最大化。
需要注意的第一件事是,a1 项对效率达到最大时的电流不产生影响。这是由于它与损耗相关,而上述损耗又与诸如二极管结点的输出电流成比例关系。因此,当输出电流增加时,上述损耗和输出功率也会随之增加,并且对效率没有影响。需要注意的第二件事是,最佳效率出现在固定损耗和传导损耗相等的某个点上。这就是说,只要控制设置 a0 和 a2 值的组件,便能够获得最佳效率。还是要努力减小 a1 的值,并提高效率。控制该项所得结果对所有负载电流而言均相同,因此如其他项一样没有出现最佳效率。a1 项的目标是在控制成本的同时达到最小化。
表 1 概括总结了各种电源损耗项及其相关损耗系数,该表提供了一些最佳化电源效率方面的折中方法。例如,功率 MOSFET 导通电阻的选择会影响其栅极驱动要求及 Coss 损耗和潜在的缓冲器损耗。低导通电阻意味着,栅极驱动、Coss 和缓冲器损耗逆向增加。因此,您可通过选择 MOSFET 来控制 a0 和 a2。
压;它们还包含两组低压差线性稳压器(LDO),负责提供电源给锁相回路 (PLL) 和SRAM或处理器的其它功能模块。这些器件还有许多功能未列在表中,例如后备电池支持、I2C界面和重置功能。
表 1 损耗系数及相应的电源损耗
损耗系数
举例
a0
偏压损耗         Coss 损耗
内核损耗         缓冲器损耗
栅极驱动损耗
a1
二级管结点损耗         开关损耗
逆向恢复损耗             SR 停滞时间损耗
a2
FFT 电阻损耗             绕组损耗
漏电感损耗                 蚀刻损耗
电容器纹波 | 损耗      电流感应损耗
代数式下一位将最佳电流代回到效率方程式中,解得最大效率为:
需要最小化该表达式中的最后两项,以最佳化效率。a1 项很简单,只需对其最小化即可。末尾项能够实现部分优化。如果假设 MOSFET 的 Coss 和栅极驱动功率与其面积相关,同时其导通电阻与面积成反比,则可以为它选择最佳面积(和电阻)。图 1 显示了裸片面积的优化结果。裸片面积较小时,MOSFET 的导通电阻变为效率限制器。随着裸片面积增加,驱动和 Coss 损耗也随之增加,并且在某一点上变为主要损耗组件。这种最小值相对宽泛,从而让设计人员可以灵活控制已实现低损耗的 MOSFET 成本。当驱动损耗等于传导损耗时达到最低损耗。


图 1 调节 MOSFET 裸片面积来最小化满负载功率损耗
图 2 是围绕图 1 最佳点的三种可能设计效率图。图中分别显示了三种设计的正常裸片面积。轻负载情况下,较大面积裸片的效率会受不断增加的驱动损耗影响,而在重负载条件下小尺寸器件因高传导损耗而变得不堪重负。这些曲线代表裸片面积和成本的三比一变化,注意这一点非常重要。正常芯片面积设计的效率只比满功率大面积设计的效率稍低一点,而在轻载条件下(设计常常运行在这种负载条件下)则更高。
图 2 效率峰值出现在满额定电流之前

使用特权

评论回复
地板
chuntian2016| | 2017-4-29 12:31 | 只看该作者
电源效率最大化是所有设计者的终极目标的

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

个人签名:qq群: 嵌入式系统arm初学者 224636155←← +→→点击-->小 i 精品课全集,21ic公开课~~←←→→点击-->小 i 精品课全集,给你全方位的技能策划~~←←

2810

主题

19297

帖子

104

粉丝