LED作为一种出现时间最晚的照明技术,其优点不仅体现在发光质量方面,在生产、制造、易用性方面都要大大超越白炽灯、荧光灯等传统光源。受到荧光灯发光原理的启发,LED生产商通过在高亮度蓝光LED管芯上加一层荧光粉,用蓝光激发荧光粉发出白光。此外,通过采用不同的荧光粉,可发出色温为4500~10000K及色温为2850~3800K的多种白光LED,白光LED的发光效率大都已超过301m/W,某些产品已超过50lm/W的水平,具备了正式大规模实用化的基础。RGB三色LED合成白光综合性能好,在高显色指数下,流明效率有可能高到2001m/w,要解决的主要技术难题是提高绿光LED的电光转换效率,目前其只有13%左右。对于LED激发荧光粉发光而言,三基色混光可以避免前者光谱分布不连续,显色性不好等缺点,同时三基色混光的人眼舒适度可大大提高,由三基色PWM调制后可以根据需要在同一光源实现多色和全彩色照明。
1、设计理念及方案
设计大功率半导体驱动,首先要从发光芯片选择及光源实现;驱动电路设计,二次光学设计;设备封装三个方面考虑。
在LED照明中,有单色LED激发荧光粉发光的成功设计案例,但考虑到这种方案出光难以实现全光谱、高显色,在本次设计中采用RGB三基色混光光源,及对红绿蓝三种单色LED芯片单独驱动,分别发光实现光源的完成。为了满足大功率输出下的照度稳定,要实现对LED温度衰减的补偿,同时也要对启动时的浪涌脉冲和电流的不稳定波动做出补偿。在二次光学设计时主要考虑三基色混光,在积分球混光和光纤耦合的对比中选择光纤耦合,将三色芯片的出光通过光纤耦合混光后输出。
2 、LED光学特性及电气特性
对于超高亮LED的特性,当正向电压超过某个阈值(约2V),即通常所说的导通电压之后,可近似认为,IF与VF成正比。当前超高亮LED的最高IF可达1A,而VF通常为2~4V。由于LED的光特性通常都描述为电流的函数,而不是电压的函数,采用恒流源驱动可以更好地控制亮度。此外,LED的正向压降变化范围比较大(最大可达lV以上),VF的微小变化会引起较大的IF变化,从而引起亮度的较大变化。所以,采用恒压源驱动不能保证LED亮度的一致性,并且影响LED的可靠性、寿命和光衰。因此,超高亮LED通常采用恒流源驱动。LED的光通量与温度成反比,85℃时的光通量是25℃时的一半,而-40℃时的光输出是25℃时的1.8倍。温度的变化对LED的波长也有一定的影响,因此,良好的散热是LED保持恒定亮度的保证。 |