1. AD转换器的分类
下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。 1)积分型(如TLC7135)
积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。 双积分tlc7135芯片资料 2)逐次比较型(如TLC0831)
逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。 TLC0831芯片资料(德州仪器公司(TI)推出的TLC0831/2是广泛应用的8位A/D转换器。TLC0831是单通道输入;TLC0832是双通道输入,并且可以软件配置成单端或差分输入。串行输出可以方便的和标准的移位寄存器及微处理器接口)
TLC0831可以外接高精度基准以提高转换精度,TLC0832的基准输入在片内与VCC连接。TLC0831/2的操作非常类似TLC0834/8(更多输入通道),为以后升级提供便利。 3)并行比较型/串并行比较型(如TLC5510)
并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。
串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为 Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。
tLC5510芯片资料 (TLC5510是CMOS、8位、20MSPS模拟量转数字量的转换器(ADC),它采用半闪速结构(semi-flash architecture)。单5V工作电源且功耗只有100mW(典型值)的功率。内含采样和保持电路,具有高阻抗方式的并行接口和内部基准电阻。
与闪速转换器(flash converters)相比,半闪速结构减少了功率损耗和晶片尺寸。通过在2步过程(2-step process)中实现转换,可以极大地减少比较器的数目。转换数据的等待时间为2.5个时钟。
内部基准电阻使用VDDA可产生标准的2V满度转换范围。为了实现此选项仅需外部跳线器,这样减小了对外部基准或电阻的需求。差分线性度在25℃ 温度下为0.5LSB,在整个工作温度范围内的最大值是0.75LSB。用差分增益1%和差分相位为0.7%可以规定动态特性范围。 4)Σ-Δ(Delta-Sigma)调制型(如AD7705)
Σ-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。电路的数字部分基本上容易单片化,因此容易做到高分辨率。主要用于音频和测量。 5)电容阵列逐次比较型
电容阵列逐次比较型AD在内置DA转换器中采用电容矩阵方式,也可称为电荷再分配型。一般的电阻阵列DA转换器中多数电阻的值必须一致,在单芯片上生成高精度的电阻并不容易。如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片AD转换器。最近的逐次比较型AD转换器大多为电容阵列式的。 6)压频变换型(如AD650)
压频变换型(Voltage-Frequency Converter)是通过间接转换方式实现模数转换的。其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。从理论上讲这种AD的分辨率几乎可以无限增加,只要采样的时间能够满足输出频率分辨率要求的累积脉冲个数的宽度。其优点是分辩率高、功耗低、价格低,但是需要外部计数电路共同完成AD转换。 |