#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define SAMP 160
#define frequency 47.5 //为方便仿真频率先固定
#define MN (1.0*SAMP*50/47.5)
float tmp[21];
float ratio[20];
struct compx
{
float real;
float imag;
};
struct compx sum[SAMP+1];
float base; /*-基波-*/
float component_O[20]; /* -各次谐波分量-*/
float component_O_rt[20];
float ftmp;
float angle[20];
int N = SAMP;
#define RN SAMP*2
float AD_RESULT[RN];
float CZ_RESULT[RN];
/*float amend_mt[20]= //谐波修正系数
{
1.0,0.9752,0.9752,0.9752,0.9752,0.9752,0.9752,0.9752,0.9752,0.9752,
0.9752*1.08,0.9752*1.015,0.9752*1.022,0.9752*1.025,0.9752*1.030,
0.9752*1.032,0.9752*1.042,0.9752*1.055,0.9752*1.065,0.9752*1.083
};
*/
struct compx EE(struct compx b1,struct compx b2)
{
struct compx b3;
b3.real=(b1.real*b2.real-b1.imag*b2.imag);
b3.imag=(b1.real*b2.imag+b1.imag*b2.real);
return(b3);
}
float pwcz(float x)
{
float y;
float e1,e2,e3;
unsigned int k;
if((unsigned int)(x*10)%10<=5)
{
k=(unsigned int)x;
printf("k=%d\t",k);
}
else
{
k=(unsigned int)x+1;
printf("k1=%d\t",k);
}
e1=(x-k)*(x-(k+1))/2.0;
e2=(x-(k-1))*(x-(k+1))/-1.0;
e3=(x-(k-1))*(x-k)/2.0;
y=e1*AD_RESULT[k-1]+e2*AD_RESULT[k]+e3*AD_RESULT[k+1];
printf("y=%f\n", y);
return y;
}
static void draw_data(float *buf,int len,int mode)
{
FILE *stream;
float u;
float temp;
stream = fopen( "data.txt", "w" );
int n = 0;
while(len> 0)
{
temp = *buf;
if( temp < 0)
{
temp = temp/4 + 60;
}
else
{
temp = temp/4 + 60;
}
fprintf(stream, "%d %f\t", n++, *buf);
for (u = 0; u < temp-1; u++)
{
fprintf( stream, " ");
}
fprintf( stream, "*\n");
buf += 1;
len -= 1;
};
fclose( stream );
}
void main()
{
for(int n=1;n<=2*N;n++) // 正弦波加谐波计算测试
{
AD_RESULT[n]=220*sin(2*3.1415926*(n-1)/MN)
+0*sin(2*2*3.1415926*(n-1)/MN) //2次
// +22*sin(3*2*3.1415926*(n-1)/MN) //3次
// +22*sin(4*2*3.1415926*(n-1)/MN) //4次
// +22*sin(5*2*3.1415926*(n-1)/MN) //5次
// +22*sin(6*2*3.1415926*(n-1)/MN) //6次
// +22*sin(7*2*3.1415926*(n-1)/MN) //5次
// +22*sin(8*2*3.1415926*(n-1)/MN) //5次
// +22*sin(9*2*3.1415926*(n-1)/MN) //5次
// +6.6*sin(10*2*3.1415926*(n-1)/MN) //10次
// +6.6*sin(11*2*3.1415926*(n-1)/MN) //5次
// +6.6*sin(12*2*3.1415926*(n-1)/MN) //5次
// +6.6*sin(13*2*3.1415926*(n-1)/MN) //5次
// +6.6*sin(14*2*3.1415926*(n-1)/MN) //5次
// +6.6*sin(15*2*3.1415926*(n-1)/MN) //5次
// +6.6*sin(16*2*3.1415926*(n-1)/MN) //16次
+11*sin(17*2*3.1415926*(n-1)/MN)
+11*sin(18*2*3.1415926*(n-1)/MN)
+11*sin(21*2*3.1415926*(n-1)/MN);
// +22*sin(19*2*3.1415926*(n-1)/MN); //19次
// printf("AD_RESULT[%d]=%f\n", n, AD_RESULT[n]);
}
for(n=1;n<=SAMP;n++) // 正弦波加谐波计算测试
{
printf("AD_RESULT[%d]=%f\t", n, AD_RESULT[n]);
CZ_RESULT[n]=pwcz(n*50.0/frequency);
}
float tmp2;
float temp;
for(int m=1; m<22;m++)
{
for(n=1; n<=SAMP; n++)
{
sum[m].real+=CZ_RESULT[n]*cos(2*3.1415926*m*n/SAMP);
}
for(n=1; n<=SAMP; n++)
{
sum[m].imag+=CZ_RESULT[n]*sin(2*3.1415926*m*n/SAMP);
}
tmp2=2*sqrt((sum[m].real*sum[m].real+sum[m].imag*sum[m].imag))/SAMP;
temp = tmp2;
component_O[m]=temp;
ftmp = component_O[m] * component_O[m];
component_O_rt[m] = sqrt(ftmp);
ratio[m] = component_O_rt[m]*100/component_O_rt[1];
// printf("component_O_rt[%d]=%f ratio[%d] = %f angle[%d]=%f\n", n, component_O_rt[n], n, ratio[n], n, angle[n]);
printf("component_O_rt[%d]=%f ratio[%d] = %f \n", m, component_O_rt[m], m, ratio[m]);
}
draw_data(AD_RESULT, 2*SAMP, 0);
draw_data(CZ_RESULT, SAMP, 0);
}