打印

转:在嵌入式系统中应用NAND Flash闪存作为存储设备

[复制链接]
1822|1
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
金鱼木鱼|  楼主 | 2011-3-27 16:51 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
对于许多消费类音视频产品而言,NAND Flash是一种比硬盘驱动器更好的存储方案,这在不超过4GB的低容量应用中表现得犹为明显。随着人们持续追求功耗更低、重量更轻和性能更佳的产品,Nand正被证明极具吸引力。
  NAND闪存阵列分为一系列128kB的区块(block),这些区块是NAND器件中最小的可擦除实体。擦除一个区块就是把所有的位 (bit)设置为“1”(而所有字节(byte)设置为FFh)。有必要通过编程,将已擦除的位从“1”变为“0”。最小的编程实体是字节(byte)。 一些NOR闪存能同时执行读写操作(见下图1)。虽然NAND不能同时执行读写操作,它可以采用称为“映射(shadowing)”的方法,在系统级实现这一点。这种方法在个人电脑上已经沿用多年,即将BIOS从速率较低的ROM加载到速率较高的RAM上。
  NAND的效率较高,是因为NAND串中没有金属触点。NAND闪存单元的大小比NOR要 小(4F2:10F2)的原因,是NOR的每一个单元都需要独立的金属触点。NAND与硬盘驱动器类似,基于扇区(页),适合于存储连续的数据,如图片、 音频或个人电脑数据。虽然通过把数据映射到RAM上,能在系统级实现随机存取,但是,这样做需要额外的RAM存储空间。此外,跟硬盘一样,NAND器件存 在坏的扇区,需要纠错码(ECC)来维持数据的完整性。
  存储单元面积越小,裸片的面积也就越小。在这种情况下,NAND就能够为当今的低成本消费市场提供存储容量更大的闪存产品。NAND闪存 用于几乎所有可擦除的存储卡。NAND的复用接口为所有最新的器件和密度都提供了一种相似的引脚输出。这种引脚输出使得设计工程师无须改变电路板的硬件设 计,就能从更小的密度移植到更大密度的设计上。
  NAND与NOR闪存比较
  NAND闪存的优点在于写(编程)和擦除操作的速率快,而NOR的优点是具有随机存取和对字节执行写(编程)操作的能力(见下图图2)。 NOR的随机存取能力支持直接代码执行(XiP),而这是嵌入式应用经常需要的一个功能。NAND的缺点是随机存取的速率慢,NOR的缺点是受到读和擦除 速度慢的性能制约。NAND较适合于存储文件。如今,越来越多的处理器具备直接NAND接口,并能直接从NAND(没有NOR)导入数据。
  NAND的真正好处是编程速度快、擦除时间短。NAND支持速率超过5Mbps的持续写操作,其区块擦除时间短至2ms,而NOR是750ms。显然,NAND在某些方面具有绝对优势。然而,它不太适合于直接随机存取。
  对于16位的器件,NOR闪存大约需要41个I/O引脚;相对而言,NAND器件仅需24个引脚。NAND器件能够复用指令、地址和数据总 线,从而节省了引脚数量。复用接口的一项好处,就在于能够利用同样的硬件设计和电路板,支持较大的NAND器件。由于普通的TSOP-1封装已经沿用多 年,该功能让客户能够把较高密度的NAND器件移植到相同的电路板上。NAND器件的另外一个好处显然是其封装选项:NAND提供一种厚膜的2Gb裸片或 能够支持最多四颗堆叠裸片,容许在相同的TSOP-1封装中堆叠一个8Gb的器件。这就使得一种封装和接口能够在将来支持较高的密度。
  NAND基本操作
  以2Gb NAND器件为例,它由2048个区块组成,每个区块有64个页。
  每一个页均包含一个2048字节的数据区和64字节的空闲区,总共包含2,112字节。空闲区通常被用于ECC、耗损均衡(wear leveling)和其它软件开销功能,尽管它在物理上与其它页并没有区别。NAND器件具有8或16位接口。通过8或16位宽的双向数据总线,主数据被 连接到NAND存储器。在16位模式,指令和地址仅仅利用低8位,而高8位仅仅在数据传输周期使用。
  擦除区块所需时间约为2ms。一旦数据被载入寄存器,对一个页的编程大约要300μs。读一个页面需要大约25μs,其中涉及到存储阵列访问页,并将页载入16,896位寄存器中。
  除了I/O总线,NAND接口由6个主要控制信号构成:
  1.芯片启动(Chip Enable, CE#):如果没有检测到CE信号,那么,NAND器件就保持待机模式,不对任何控制信号作出响应。
  2.写使能(Write Enable, WE#): WE#负责将数据、地址或指令写入NAND之中。
  3.读使能(Read Enable, RE#): RE#允许输出数据缓冲器。
  4.指令锁存使能(Command Latch Enable, CLE): 当CLE为高时,在WE#信号的上升沿,指令被锁存到NAND指令寄存器中。
  5.地址锁存使能(Address Latch Enable, ALE):当ALE为高时,在WE#信号的上升沿,地址被锁存到NAND地址寄存器中。
  6.就绪/忙(Ready/Busy, R/B#):如果NAND器件忙,R/B#信号将变低。该信号是漏极开路,需要采用上拉电阻。
  数据每次进/出NAND寄存器都是通过16位或8位接口。当进行编程操作的时候,待编程的数据进入数据寄存器,处于在WE#信号的上升沿。在寄存器内随机存取或移动数据,要采用专用指令以便于随机存取。
  数据寄存器输出数据的方式与利用RE#信号的方式类似,负责输出现有的数据,并增加到下一个地址。WE#和RE#时钟运行速度极快,达到 30ns的水准。当RE#或CE#不为低的时候,输出缓冲器将为三态。这种CE#和RE#的组合使能输出缓冲器,容许NAND闪存与NOR、SRAM或 DRAM等其它类型存储器共享数据总线。该功能有时被称为“无需介意芯片启动(chip enable don't care)”。这种方案的初衷是适应较老的NAND器件,它们要求CE#在整个周期为低(译注:根据上下文改写)。
  当输出一串WE#时钟时,通过在I/O位7:0上设置指令、驱动CE#变低且CLE变高,就可以实现一个指令周期。注意:在WE#信号的上升沿上, 指令、地址或数据被锁存到NAND器件之中。如表1所示,大多数指令在第二个指令周期之后要占用若干地址周期。注意:复位或读状态指令例外,如果器件忙, 就不应该发送新的指令。
  以2Gb NAND器件的寻址方案为例,第一和第二地址周期指定列地址。
  注意:因为最后一列的位置是2112,该最后位置的地址就是08h(在第二字节中)和3Fh(在第一字节中)。PA5:0指定区块内的页地址, BA16:6指定区块的地址。虽然大多编程和读操作需要完整的5字节地址,在页内随机存取数据的操作仅仅用到第一和第二字节。块擦除操作仅仅需要三个最高 字节(第三、第四和第五字节)来选择区块。
  总体而言,NAND的基本操作包括:复位(Reset, FFh)操作、读ID(Read ID, 00h)操作、读状态(Read Status, 70h)操作、编程(Program)操作、随机数据输入(Random data input, 85h)操作和读(Read)操作等。
  将NAND连接到处理器
  选择内置NAND接口的处理器或控制器的好处很多。如果没有这个选择,有可能在NAND和几乎任何处理器之间设计一个“无粘接逻辑 (glueless)”接口。NAND和NOR闪存的主要区别是复用地址和数据总线。该总线被用于指定指令、地址或数据。CLE信号指定指令周期,而 ALE信号指定地址周期。利用这两个控制信号,有可能选择指令、地址或数据周期。把ALE连接到处理器的第五地址位,而把CLE连接到处理器的第四地址 位,就能简单地通过改变处理器输出的地址,任意选择指令、地址或数据。这容许CLE和ALE在合适的时间自动设置为低。
  为了提供指令,处理器在数据总线上输出想要的指令,并输出地址0010h;为了输出任意数量的地址周期,处理器仅仅要依次在处理器地址 0020h之后输出想要的NAND地址。注意,许多处理器能在处理器的写信号周围指定若干时序参数,这对于建立合适的时序是至关重要的。利用该技术,你不 必采用任何粘接逻辑,就可以直接从处理器存取指令、地址和数据。
  多层单元
  多层单元(MLC)的每一个单元存储两位,而传统的SLC仅仅能存储一位。MLC技术有显著的密度优越性,然而,与SLC相比(表3),其速度或可靠性稍逊。因此,SLC被用于大多数媒体卡和无线应用,而MLC器件通常被用于消费电子和其它低成本产品。
  如上所述,NAND需要ECC以确保数据完整性。NAND闪存的每一个页面上都包括额外的存储空间,它就是64个字节的空闲区(每512字节的扇区 有16字节)。该区能存储ECC代码及其它像磨损评级或逻辑到物理块映射之类的信息。ECC能在硬件或软件中执行,但是,硬件执行有明显的性能优势。在编 程操作期间,ECC单元根据扇区中存储的数据来计算误码校正代码。数据区的ECC代码然后被分别写入到各自的空闲区。当数据被读出时,ECC代码也被读 出;运用反操作可以核查读出的数据是否正确。
  有可能采用ECC算法来校正数据错误。能校正的错误的数量取决于所用算法的校正强度。在硬件或软件中包含ECC,就提供了强大的系统级解 决方案。最简单的硬件实现方案是采用简单的汉明(Simple Hamming)码,但是,只能校正单一位错误。瑞德索罗门(Reed-Solomon)码提供更为强大的纠错,并被目前的控制器广为采用。此外,BCH 码由于比瑞德索罗门方法的效率高,应用也日益普及。

相关帖子

沙发
思行合一| | 2011-3-27 17:28 | 只看该作者
收藏了!

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

346

主题

1551

帖子

2

粉丝