最近在学2440的裸奔程序,有一个疑问:可不可以把裸奔程序直接套进Linux驱动框架里面而转成Linux驱动呢?
于是尝试了一下,遇到了一些困难,望大家能指导一下。
原始的裸奔程序,是mini2440出厂自带的测试程序,IIC的驱动,在iic.c文件中(中断模式):
#include <string.h>
#include "2440addr.h"
#include "2440lib.h"
#include "def.h"
#include "IIC.h"
static U8 _iicData[IICBUFSIZE];
static volatile int _iicDataCount;
static volatile int _iicStatus;
static volatile int _iicMode;
static int _iicPt;
//===================================================================
// SMDK2440 IIC configuration
// GPE15=IICSDA, GPE14=IICSCL
// "Interrupt mode" for IIC block
//===================================================================
//******************[ Test_Iic ]**************************************
void Test_Iic(void)
{
unsigned int i,j,save_E,save_PE;
static U8 data[256];
Uart_Printf("\nIIC Test(Interrupt) using AT24C02\n");
save_E = rGPECON;
save_PE = rGPEUP;
rGPEUP |= 0xc000; //Pull-up disable
rGPECON |= 0xa00000; //GPE15:IICSDA , GPE14:IICSCL
pISR_IIC = (unsigned)IicInt;
rINTMSK &= ~(BIT_IIC);
//Enable ACK, Prescaler IICCLK=PCLK/16, Enable interrupt, Transmit clock value Tx clock=IICCLK/16
// If PCLK 50.7MHz, IICCLK = 3.17MHz, Tx Clock = 0.198MHz
rIICCON = (1<<7) | (0<<6) | (1<<5) | (0xf);
rIICADD = 0x10; //2440 slave address = [7:1]
rIICSTAT = 0x10; //IIC bus data output enable(Rx/Tx)
rIICLC = (1<<2)|(1); // Filter enable, 15 clocks SDA output delay added by junon
Uart_Printf("Write test data into AT24C02\n");
for(i=0;i<256;i++)
Wr24C080(0xa0,(U8)i,i);
for(i=0;i<256;i++)
data[i] = 0;
Uart_Printf("Read test data from AT24C02\n");
for(i=0;i<256;i++)
Rd24C080(0xa0,(U8)i,&(data[i]));
//Line changed 0 ~ f
for(i=0;i<16;i++)
{
for(j=0;j<16;j++)
Uart_Printf("%2x ",data[i*16+j]);
Uart_Printf("\n");
}
rINTMSK |= BIT_IIC;
rGPEUP = save_PE;
rGPECON = save_E;
}
//*************************[ Wr24C080 ]****************************
void Wr24C080(U32 slvAddr,U32 addr,U8 data)
{
_iicMode = WRDATA;
_iicPt = 0;
_iicData[0] = (U8)addr;
_iicData[1] = data;
_iicDataCount = 2;
rIICDS = slvAddr; //0xa0
rIICSTAT = 0xf0; //MasTx,Start
//Clearing the pending bit isn't needed because the pending bit has been cleared.
while(_iicDataCount!=-1);
_iicMode = POLLACK;
while(1)
{
rIICDS = slvAddr;
_iicStatus = 0x100;
rIICSTAT = 0xf0; //MasTx,Start
rIICCON = 0xaf; //Resumes IIC operation.
while(_iicStatus==0x100);
if(!(_iicStatus&0x1))
break; //When ACK is received
}
rIICSTAT = 0xd0; //Stop MasTx condition
rIICCON = 0xaf; //Resumes IIC operation.
Delay(1); //Wait until stop condtion is in effect.
//Write is completed.
}
//**********************[ Rd24C080 ] ***********************************
void Rd24C080(U32 slvAddr,U32 addr,U8 *data)
{
_iicMode = SETRDADDR;
_iicPt = 0;
_iicData[0] = (U8)addr;
_iicDataCount = 1;
rIICDS = slvAddr;
rIICSTAT = 0xf0; //MasTx,Start
//Clearing the pending bit isn't needed because the pending bit has been cleared.
while(_iicDataCount!=-1);
_iicMode = RDDATA;
_iicPt = 0;
_iicDataCount = 1;
rIICDS = slvAddr;
rIICSTAT = 0xb0; //MasRx,Start
rIICCON = 0xaf; //Resumes IIC operation.
while(_iicDataCount!=-1);
*data = _iicData[1];
}
//-------------------------------------------------------------------------
void __irq IicInt(void)
{
U32 iicSt,i;
rSRCPND = BIT_IIC; //Clear pending bit
rINTPND = BIT_IIC;
iicSt = rIICSTAT;
if(iicSt & 0x8){} //When bus arbitration is failed.
if(iicSt & 0x4){} //When a slave address is matched with IICADD
if(iicSt & 0x2){} //When a slave address is 0000000b
if(iicSt & 0x1){} //When ACK isn't received
switch(_iicMode)
{
case POLLACK:
_iicStatus = iicSt;
break;
case RDDATA:
if((_iicDataCount--)==0)
{
_iicData[_iicPt++] = rIICDS;
rIICSTAT = 0x90; //Stop MasRx condition
rIICCON = 0xaf; //Resumes IIC operation.
Delay(1); //Wait until stop condtion is in effect.
//Too long time...
//The pending bit will not be set after issuing stop condition.
break;
}
_iicData[_iicPt++] = rIICDS; //The last data has to be read with no ack.
if((_iicDataCount)==0)
rIICCON = 0x2f; //Resumes IIC operation with NOACK.
else
rIICCON = 0xaf; //Resumes IIC operation with ACK
break;
case WRDATA:
if((_iicDataCount--)==0)
{
rIICSTAT = 0xd0; //Stop MasTx condition
rIICCON = 0xaf; //Resumes IIC operation.
Delay(1); //Wait until stop condtion is in effect.
//The pending bit will not be set after issuing stop condition.
break;
}
rIICDS = _iicData[_iicPt++]; //_iicData[0] has dummy.
for(i=0;i<10;i++); //for setup time until rising edge of IICSCL
rIICCON = 0xaf; //resumes IIC operation.
break;
case SETRDADDR:
// Uart_Printf("[ S%d ]",_iicDataCount);
if((_iicDataCount--)==0)
break; //IIC operation is stopped because of IICCON[4]
rIICDS = _iicData[_iicPt++];
for(i=0;i<10;i++); //For setup time until rising edge of IICSCL
rIICCON = 0xaf; //Resumes IIC operation.
break;
default:
break;
}
}
相应的,我直接把上面的程序套到Linux字符驱动的框架里面,除了进行地址映射和寄存器使用函数读取和赋值以外,没有大的改动:
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/gpio.h>
#include <linux/init.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/miscdevice.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <mach/regs-gpio.h>
#include <asm/mach/time.h>
#include <plat/regs-timer.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <mach/hardware.h>
#include <linux/irq.h>
#include <linux/kfifo.h>
#define U32 unsigned long
static void __iomem *gpio_base_addr;
static void __iomem *iic_base_addr;
static void __iomem *timer_base_addr;
#define TIMER_PA 0x51000000
#define rTCFG0 (*(volatile unsigned *)(0x00+timer_base_addr)) //Timer 0 configuration
#define rTCFG1 (*(volatile unsigned *)(0x04+timer_base_addr)) //Timer 1 configuration
#define rTCON (*(volatile unsigned *)(0x08+timer_base_addr)) //Timer control
#define rTCNTB3 (*(volatile unsigned *)(0x30+timer_base_addr)) //Timer count buffer 3
#define rTCMPB3 (*(volatile unsigned *)(0x34+timer_base_addr)) //Timer compare buffer 3
#define rTCNTO3 (*(volatile unsigned *)(0x38+timer_base_addr)) //Timer count observation 3
#define GPIO_PA 0x56000040
#define rGPECON (0x00+gpio_base_addr)
#define rGPEUP (0x08+gpio_base_addr)
#define IIC_PA 0x54000000
#define rIICCON 0x00+iic_base_addr
#define rIICSTAT 0x04+iic_base_addr
#define rIICADD 0x08+iic_base_addr
#define rIICDS 0x0c+iic_base_addr
#define rIICLC 0x10+iic_base_addr
#define WRDATA (1)
#define POLLACK (2)
#define RDDATA (3)
#define SETRDADDR (4)
#define IICBUFSIZE 0x20
#define DEVICE_NAME "iic"
MODULE_LICENSE("Dual BSD/GPL");
static int iic_major=254;
static unsigned long gpecon_save, gpeup_save;
module_param(iic_major, int, S_IRUGO);
struct cdev cdev;
static struct semaphore lock;
static unsigned long slvAddr = 0xa0;
static unsigned char _iicData[IICBUFSIZE];
static volatile int _iicDataCount;
static volatile int _iicStatus;
static volatile int _iicMode;
static int _iicPt;
static unsigned long rd_addr = 0;
static unsigned long wr_addr = 0;
void Delay(int time)
{
unsigned long PCLK = 50000000;
U32 val = (PCLK>>3)/1000-1;
rTCFG0 &= ~(0xff<<8);
rTCFG0 |= 3<<8; //prescaler = 3+1
rTCFG1 &= ~(0xf<<12);
rTCFG1 |= 0<<12; //mux = 1/2
rTCNTB3 = val;
rTCMPB3 = val>>1; // 50%
rTCON &= ~(0xf<<16);
rTCON |= 0xb<<16; //interval, inv-off, update TCNTB3&TCMPB3, start timer 3
rTCON &= ~(2<<16); //clear manual update bit
while(time--) {
while(rTCNTO3>=val>>1);
while(rTCNTO3<val>>1);
};
}
static irqreturn_t iic_interrupt(int irq, void * dev_id)
{
U32 iicSt,i;
// rSRCPND = BIT_IIC; //Clear pending bit
// rINTPND = BIT_IIC;
iicSt = ioread32(rIICSTAT);
if(iicSt & 0x8){} //When bus arbitration is failed.
if(iicSt & 0x4){} //When a slave address is matched with IICADD
if(iicSt & 0x2){} //When a slave address is 0000000b
if(iicSt & 0x1){} //When ACK isn't received
switch(_iicMode)
{
case POLLACK:
_iicStatus = iicSt;
break;
case RDDATA:
if((_iicDataCount--)==0)
{
_iicData[_iicPt++] = ioread32(rIICDS);
iowrite32(0x90, rIICSTAT); //Stop MasRx condition
iowrite32(0xaf, rIICCON); //Resumes IIC operation.
Delay(1); //Wait until stop condtion is in effect.
//Too long time...
//The pending bit will not be set after issuing stop condition.
break;
}
_iicData[_iicPt++] = ioread32(rIICDS); //The last data has to be read with no ack.
if((_iicDataCount)==0)
iowrite32(0x2f,rIICCON); //Resumes IIC operation with NOACK.
else
iowrite32(0xaf,rIICCON); //Resumes IIC operation with ACK
break;
case WRDATA:
printk("write interrupt\n");
if((_iicDataCount--)==0)
{
iowrite32(0xd0,rIICSTAT); //Stop MasTx condition
iowrite32(0xaf,rIICCON); //Resumes IIC operation.
Delay(1); //Wait until stop condtion is in effect.
//The pending bit will not be set after issuing stop condition.
break;
}
iowrite32(_iicData[_iicPt++], rIICDS); //_iicData[0] has dummy.
for(i=0;i<10;i++); //for setup time until rising edge of IICSCL
iowrite32(0xaf,rIICCON); //resumes IIC operation.
break;
case SETRDADDR:
// Uart_Printf("[ S%d ]",_iicDataCount);
if((_iicDataCount--)==0)
break; //IIC operation is stopped because of IICCON[4]
iowrite32(_iicData[_iicPt++], rIICDS);
for(i=0;i<10;i++); //For setup time until rising edge of IICSCL
iowrite32(0xaf,rIICCON); //Resumes IIC operation.
break;
default:
break;
}
return IRQ_HANDLED;
}
static int iic_open(struct inode *inode, struct file *filp)
{
int ret;
unsigned long gpe;
// if(!down_trylock(&lock))
{
// printk("open succeed.\n");
// printk("%x\n",S3C2410_TCFG0);
// unsigned long a=ioread32(S3C2410_TCFG0);
// printk("%x\n",a);
gpe = ioread32(rGPECON);
gpecon_save = gpe;
iowrite32(gpe|0xa00000, rGPECON);
gpe = ioread32(rGPEUP);
gpeup_save = gpe;
iowrite32(gpe|0xc000, rGPEUP);
ret = request_irq(IRQ_IIC, iic_interrupt, IRQF_DISABLED, DEVICE_NAME,NULL);
if (ret)
{
//DPRINTK("Register IRQ_TIMER0 failed!\n");
printk("Register IRQ_IIC failed!\n");
return ret;
}
// enable_irq(IRQ_IIC);
iowrite32(0xaf, rIICCON);
iowrite32(0x10, rIICADD);
iowrite32(0x10, rIICSTAT);
iowrite32((1<<2)|(1<<0), rIICLC);
rd_addr=0;
wr_addr=0;
printk("open succeed\n");
return 0;
}
// else
// return -EBUSY;
}
int iic_release(struct inode *inode, struct file *filp)
{
// disable_irq(IRQ_IIC);
free_irq(IRQ_IIC,NULL);
iowrite32(gpecon_save,rGPECON);
iowrite32(gpeup_save,rGPEUP);
// up(&lock);
return 0;
}
static ssize_t iic_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
_iicMode = SETRDADDR;
_iicPt = 0;
_iicData[0] = (unsigned char)rd_addr;
_iicDataCount = 1;
iowrite32(slvAddr, rIICDS);
iowrite32(0xf0, rIICSTAT);
while(_iicDataCount != -1);
_iicMode = RDDATA;
_iicPt = 0;
_iicDataCount =1;
iowrite32(slvAddr, rIICDS);
iowrite32(0xb0, rIICSTAT);
iowrite32(0xaf, rIICCON);
while(_iicDataCount != -1)
*buf = _iicData[1];
rd_addr++;
return 1;
}
static ssize_t iic_write(struct file *filp, const char __user *buf, size_t count, loff_t *ppos)
{
_iicMode = WRDATA;
_iicPt = 0;
_iicData[0] = (unsigned char)wr_addr;
_iicData[1] = *buf;
iowrite32(0xaf, rIICCON);
iowrite32(slvAddr, rIICDS);
iowrite32(0xf0, rIICSTAT);
while(_iicDataCount != -1);
_iicMode = POLLACK;
while(1)
{
iowrite32(slvAddr,rIICDS);
_iicStatus = 0x100;
iowrite32(0xf0, rIICSTAT);
iowrite32(0xaf, rIICCON);
while(_iicStatus == 0x100);
if(!(_iicStatus&0x1))
break;
}
iowrite32(0xd0,rIICSTAT);
iowrite32(0xaf,rIICCON);
Delay(1);
wr_addr++;
return 1;
}
static int iic_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
return 0;
}
static const struct file_operations iic_fops =
{
.owner = THIS_MODULE,
.open = iic_open,
.read = iic_read,
.write = iic_write,
.ioctl = iic_ioctl,
.release = iic_release,
};
static int iic_init(void)
{
int result;
dev_t devno = MKDEV(iic_major,0);
if(iic_major)
{
result = register_chrdev_region(devno,1,"iic");
}
else /* 动态分配设备号 */
{
result = alloc_chrdev_region(&devno, 0, 1, "iic");
iic_major = MAJOR(devno);
}
if (result < 0)
return result;
/*初始化cdev结构*/
cdev_init(&cdev, &iic_fops);
cdev.owner = THIS_MODULE;
cdev.ops = &iic_fops;
/* 注_册字符设备 */
cdev_add(&cdev, MKDEV(iic_major, 0), 1);
gpio_base_addr=ioremap(GPIO_PA,0x20);
if (gpio_base_addr == NULL) {
printk(KERN_ERR "Failed to remap register block\n");
return -ENOMEM;
}
iic_base_addr=ioremap(IIC_PA,0x20);
if (iic_base_addr == NULL) {
printk(KERN_ERR "Failed to remap register block\n");
iounmap(gpio_base_addr);
return -ENOMEM;
}
timer_base_addr=ioremap(TIMER_PA,0x50);
if (timer_base_addr == NULL) {
printk(KERN_ERR "Failed to remap register block\n");
iounmap(gpio_base_addr);
iounmap(iic_base_addr);
return -ENOMEM;
}
printk("iic_init ok!\n");
return 0;
}
static void iic_exit(void)
{
iounmap(gpio_base_addr);
iounmap(iic_base_addr);
iounmap(timer_base_addr);
cdev_del(&cdev); /*注销设备*/
unregister_chrdev_region(MKDEV(iic_major, 0), 1); /*释放设备号*/
printk("iic_exit ok!\n");
}
module_init(iic_init);
module_exit(iic_exit);
上面的write函数每次往EEPROM中写一个字节的数据,而且每次写完wd_addr都会加1。
上面的驱动程序,写的时候,中断一直没有产生,不知道是什么原因。不知道是不是这种方法不可行。
希望大家不吝赐教,先谢过。 |
|