打印

BP神经网络-- C语言实现 下

[复制链接]
981|5
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
gaoyang9992006|  楼主 | 2018-10-26 17:48 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
上一篇  C语言实现上 中介绍了程序实现时定义的一些数据结构、程序执行的流程以及 程序的基本骨架(详情见 C语言实现上)。留下了两个关键函数computO(i) 和 backUpdate(i) 没有分析实现,参数 i 代表的是第 i 个样本,本篇我们一起来分析下这两个函数的实现。
BP神经网络输出
      函数 computO(i) 负责的是通过BP神经网络的机制对样本 i 的输入,预测其输出。回想BP神经网络的基本模型(详情见 基本模型)对应的公式(1)还有 激活函数对应的公式(2):

   

      在前篇设计的BP神经网络中,输入层与隐藏层权重对应的数据结构是w[Neuron][In],隐藏层与输出层权重对应的数据结构是v[Out][Neuron],并且数组 o[Neuron] 记录的是神经元通过激活函数对外的输出,BP神经网络预测的样本结果保存在OutputData[Out]中。由此,就可以得到以下实现的参考代码:
void computO(int var){

    int i,j;
    double sum,y;
        
        /*
            神经元输出
         */
   
        for (i = 0; i < Neuron; ++i){
        sum=0;
        for (j = 0; j < In; ++j)
            sum+=w[i][j]*d_in[var][j];
        o[i]=1/(1+exp(-1*sum));
    }

/*  隐藏层到输出层输出 */

    for (i = 0; i < Out; ++i){
        sum=0;
        for (j = 0; j < Neuron; ++j)
            sum+=v[i][j]*o[j];

        OutputData[i]=sum;
    }   
}
BP神经网络的反馈学习
         函数 backUpdate(i) 负责的是将预测输出的结果与样本真实的结果进行比对,然后对神经网络中涉及到的权重进行修正,也这是BP神经网络实现的关键所在。如何求到对于 w[Neuron][In] 和 v[Out][Neuron] 进行修正的误差量便是关键所在!误差修正量的求法在基本模型一文中数学分析部分有解答,具体问题具体分析,落实到我们设计的这个BP神经网络上来说,需要得到的是对w[Neuron][In] 和 v[Out][Neuron] 两个数据进行修正误差,误差量用数据结构 dw[Neuron][In]  和  dv[Out][Neuron]  来进行存储。那么来分析下这两个修正误差量是什么样的?推导的思路与基本模型中推导误差量的一致,这里仅列出对具体对于我们设计的BP神经网络中的数学推导过程:

      如果你不想知道推导过程,那么只需要看上面中的两个 所以(有三个点的地方) 的内容,就可以知道所需要的误差量是什么样的了;如果想要想弄明白的话,或许需要自己在稿子上画画看推导推导。到这里完成了数学推导,实现的代码就很容易写了。在具体实现对误差修改中,我们再加上学习率,并且对先前学习到的修正误差量进行继承,直白的说就是都乘上一个0到1之间的数,具体的见如下实现参考代码:

使用特权

评论回复

相关帖子

沙发
gaoyang9992006|  楼主 | 2018-10-26 17:49 | 只看该作者
#define A  0.2
#define B  0.4
#define a  0.2
#define b  0.3
void backUpdate(int var)
{
    int i,j;
    double t;
    for (i = 0; i < Neuron; ++i)
    {
        t=0;
        for (j = 0; j < Out; ++j){
            t+=(OutputData[j]-d_out[var][j])*v[j][i];

            dv[j][i]=A*dv[j][i]+B*(OutputData[j]-d_out[var][j])*o[i];
            v[j][i]-=dv[j][i];
        }

        for (j = 0; j < In; ++j){
            dw[i][j]=a*dw[i][j]+b*t*o[i]*(1-o[i])*d_in[var][j];
            w[i][j]-=dw[i][j];
        }
    }
}
好了,至此BP神经网络的C语言实现就全部完成了。最后,我们可以测试下BP神经网络的运行。我这里是这样给出数据的,两个输入a、b(10以内的数),一个输出 c,c=a+b。换句话说就是教BP神经网络加法运算。在 45个神经元,820个训练样例,样本平均误差小于0.01时完成训练(学习率等见参考代码)的条件下,最后预测 (6,8),(2.1,7),(4.3,8)实际输出结果如下:
      最后附上参考实现代码,以及实验训练时的数据、和神经元信息。(本示例 仅为BP神经网络实现的 简单DEMO,若实际使用还需多加考虑!!!)

使用特权

评论回复
板凳
gaoyang9992006|  楼主 | 2018-10-26 18:51 | 只看该作者
neuron.zip (8.2 KB)

原作者是个好人,还留了源码,我们感谢他:jzhlin

使用特权

评论回复
地板
carbon| | 2019-6-12 22:10 | 只看该作者
有一个地方没明白,大神给解释一下:系数v的修正量=A*dv+B*(dE / dv)。A和B我的理解是人为指定的权重系数,问题是对v修正的时候加上的误差对系数的导数是什么意思?

使用特权

评论回复
5
carbon| | 2019-8-28 14:45 | 只看该作者
carbon 发表于 2019-6-12 22:10
有一个地方没明白,大神给解释一下:系数v的修正量=A*dv+B*(dE / dv)。A和B我的理解是人为指定的权重系数 ...

2个月后想明白了,自己回复吧。误差对系数的导数的符号指明了系数的调节方向(变大还是变小),导数的大小则表明了该系数的调节,对修正误差的贡献。贡献大的多调一点,贡献小的系数就少调一点。

使用特权

评论回复
6
ctr3544435| | 2020-2-22 19:15 | 只看该作者
还留了源码

使用特权

评论回复
发新帖
您需要登录后才可以回帖 登录 | 注册

本版积分规则

认证:西安公路研究院南京院
简介:主要工作从事监控网络与通信网络设计,以及从事基于嵌入式的通信与控制设备研发。擅长单片机嵌入式系统物联网设备开发,音频功放电路开发。

1971

主题

15978

帖子

210

粉丝