打印
[资料分享]

电源并联:多选项,衡利弊

[复制链接]
992|0
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
本帖最后由 xyz549040622 于 2018-11-9 07:58 编辑



        系统设计人员希望考虑将直流电源并联使用可能有很多原因。其中有些与物料清单和物流问题相关,其他则集中于满足系统电流、性能或可靠性目标。在非设计方面,并联电源的能力也利于某个电源能单独使用,或在跨广泛产品线中组合使用。这可以简化采购,增加单一电源的用量并简化库存管理。当然,考虑并联电源的技术原因更加复杂。首先,或许由于无法获得较低功耗的元器件,或者市场增加了新卖点和新功能,产品可能实际上比预算需要更多。
        系统设计人员希望考虑将直流电源并联使用可能有很多原因。其中有些与物料清单和物流问题相关,其他则集中于满足系统电流、性能或可靠性目标。

        在非设计方面,并联电源的能力也利于某个电源能单独使用,或在跨广泛产品线中组合使用。这可以简化采购,增加单一电源的用量并简化库存管理。

        当然,考虑并联电源的技术原因更加复杂。首先,或许由于无法获得较低功耗的元器件,或者市场增加了新卖点和新功能,产品可能实际上比预算需要更多电流,这时使用并联电源可能是一种 保险 的形式。其次,并联电源可以支持N+1甚至N+2冗余,以防止单点故障,或在不影响系统的前提下实现故障电源的热插拔。第三,它允许使用功能、特点和外形尺寸熟知的、经过验证的电源,因而可减少设计导入风险和不确定性。最后,如果一个高功率单元在一个高度局限的区域散热量太多,它可以通过增加电源转换器布板的灵活性来实现 热扩散 。

电源并联提供灵活性和潜在好处的同时,也带来了一个明显的问题:可以在并联配置中使用任何电源吗?答案是 不能 。它取决于电源的设计、电源连接所用的技术,以及并联使用电源的理由。

希望将电源并联最明显和最简单的方法是简单地将其输出连接在一起。一般来说,这行不通,因为每个电源都有其自己的输出电压调节,因此不仅要设法在其负载变化时仍然保证这个调节,而且在调节时还需要避开其他电源闭合回路的影响。

        对于那些内部包括传统的误差放大器和参考的电源来说,只以并联方式放置多个电源不是实现高功率阵列的有效方法。电源之间的参数差异往往会引起一个电源 那个以输出电压为基准的最高参考电压的电源 承载所有负载电流,而所有剩下的电源不会带载。

        在这种情况下,当负载超过了这个 领先 电源(承担最大负载)的带载能力时,它可能会进入一种恒流极限模式(这可能会也可能不会是一个额定工作模式),或者它可能把过载当作故障而关闭。取决于这个被讨论的电源,这些响应可能会导致过应力,尤其是在它们作为应用中常规操作的一部分出现时。此外,对于那些由于过载而出现电源关闭的情况,在电源阵列中第二高参考电压的电源将被迫承载整个负载,并将同样关闭。这将很快导致整个电源轨的崩溃。

        如果一个电源设置为恒压(CV)模式,而其他电源设置为恒流(CC)模式,但输出电压稍高,直接连接拓扑结构的方式可能很有效;请注意,并非所有电源都允许选择输出模式。设置为较高输出电压的电源将提供恒流输出,而它们的每个输出电压都将下降,直到等于CV电源的输出。负载必须吸取足够的电流,以确保处于CC模式的电源必须保持在该模式下运行。请注意,使用这两种方式意味着多个电源不再完全相同,从而削弱了并联配置的某些优势。

        如果电源是专为支持这个拓扑结构,或者如果有一个控制回路误差放大器可以反馈误差信号回到所有其他电源,使它们共享负载,直连方法是可行的。不过,对于从主到从的控制信号来说,后一种方法还需要一条 均流母线 。

        另一种方法是为每个电源的输出增加串联的小镇流电阻器,以均衡阵列中电源之间的负载电流分布,甚至是在其控制回路看到不同输出电压时,如图1所示。镇流电阻器会对负载调节产生一些影响,这取决于镇流电阻意欲克服不均流所产生的设定点误差的大小。不过,这些镇流电阻器也会散发热量,降低系统效率。


        图1:一种均流方法是在每个电源输出使用较低数值的镇流电阻器,但由于电阻相关的耗散和整体效率,这种方式也存在问题。

        这个 OR 那个?

        针对直连困扰的看似 简单 的一个解决方案是只在每个电源和所有电源的公共连接点之间使用二极管连接,该技术通常称为二极管ORing(图2)。ORing二极管对防止电源吸入(sinking)连接点的电流非常有效,但通常不足以解决有独立误差放大器的电源中的均流误差,因为二极管的导通特性曲线比较陡,以致电源设定值的参数差异仍然会导致严重的均流问题。
        图2:原则上可以通过使用二极管组合多个直流电源输出来隔离一个电源与另一个电源,但这种配置有很多有关负载平衡和均流的性能问题。

        二极管ORing对于其输出可以同时吸入和流出电流(双象限工作)的电源独立运行来说一般是必需的。相对单象限电源来说,如果没有ORing二极管,直接并联这种电源的效果更糟糕。单象限电源只有负载均流误差,但双象限电源的调节会产生竞争性输出电压控制。这将导致超过负载电流的大电流在阵列中的电源间循环流动,并可能立即导致一个或多个电源过载。

        此外,如果二极管的导通阈值是负温度系数,这实际上将会促使阵列中的电流错乱(hogging)。采用正温度系数的整流 肖特基二极管,或是通过使用在有源ORing实现中采用FET和整流器构建的类似二极管的功能 是减少该问题的一个方法,但由于二极管正向压降,效率将会降低,并且有源ORing会增加成本和复杂性。

        在某些情况下,二极管ORing仍然可以改善系统级的可靠性。感兴趣的主要情况是其中的一个电源出现输出FET或者电容短路,这可能危及共同输出电压轨。ORing二极管会快速将该短路电源与输出隔开,从而提高可靠性和系统鲁棒性。


        谁来负责?


        为了在阵列中实现可靠和可预见的工作,电源一般必须专门针对并联工作来设计。我们必须全面考虑启动同步、故障保护协调,以及控制回路的稳定性。

对于一个可为负载提供更高水平可用电流的并联阵列电源来说,需要采用针对阵列使用的某种类型的控制回路策略。一种流行的控制策略是运行没有内部稳压放大器的电源,但用一个由误差放大器控制的公共控制信号输入将它们组合在一起。这个误差放大器可调节系统的输出,然后其单反馈信号被分发到系统中的所有电源。

        这种流行控制策略的主要优点是输出电压的调节很好,而均流误差由部件间的调制器增益的偏差所决定。不利的方面是,使用单个误差放大器和单线控制母线可能会产生单点失效,这对某些类型的高可靠性系统可能是个问题。另外,调制器增益的参数误差难以控制,这往往导致制造商权衡良率来控制共享误差。

        对于单控制回路的方法,如果电源对其控制节点输入具有很小的容限,那么均流误差可降到最低。如果共享误差很大,那么要么必须降低阵列的额定功率,以避免由于共享失衡造成阵列中任何单个电源过载,要么需要采用具体处理措施。用于改善由于不同部件间的差异所造成的均流误差的技术包括在生产中针对输出误差进行校准(这种方法昂贵),或者在阵列中每个电源附近增加电流控制环来消除该误差(这会增加复杂性和器件)。这些本地回路的电流检测通常需要对电源增加分流电阻。

        对于控制节点是参考初级侧的隔离DC-DC电源来说,会出现第二种障碍:初级侧和次级侧隔离边界的误差放大器输出信号的传输问题。根据所使用的隔离元件,隔离技术经常会增加成本,占用宝贵的空间,而且会对可靠性带来不利影响。


相关帖子

发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

个人签名:qq群: 嵌入式系统arm初学者 224636155←← +→→点击-->小 i 精品课全集,21ic公开课~~←←→→点击-->小 i 精品课全集,给你全方位的技能策划~~←←

2782

主题

19267

帖子

104

粉丝