采用近年新推出的一款32位定点数字信号处理器TMS320F2808。它具有丰富的片内外围设置:
两个事件管理器模块各包含两个16位定时器。完成PWM信号产生、信号指示和故障保护功能;最小转换时间为160 ns的12位ADC完成数据采集:CAN,SCI和SPI通信接口完成快速通信功能。其最高主频为100 MHz.单个指令周期为10 ns.可以很好地满足APF控制系统的控制要求。 采用LPC2364型ARM芯片。它基于一个支持实时仿真和嵌入式跟踪的ARMTTDMI.STMCPU微控制器,功能强大且成本效率高。支持10/100 Ethernet、全速USB2.0和CAN2.0B.具有高达512 kB的FLASH和58 kB的SRAM.可以方便地实现液晶显示器与键盘组成的人机接口。以及与上位机的通信功能。控制系统框图如图3所示。 电网中的三相电压信号、直流侧电压信号、负载电流信号以及APF输出信号经过信号调理后送往DSP进行转换。DSP内置A/D模块具有12位分辨率、流水线结构。根据所采样的数据,TMS320F2808运算得到的如与APF实际输出的补偿电流进行滞环比较。输出三相PWM信号控制变流器。同时,采用逻辑器件组成了硬件死区控制方式,配合IGBT模块设计了相应的逻辑硬件驱动保护。以提高系统的可靠性。
DSP与ARM之间采用CAN通信方式,通信速度可达l Mb/s。能很好地满足高速传输数据的要求。ARM通过CAN总线调用刖D数据并扩展FLASH芯片用于存储数据。芯片采用I/O模式的16 MB容量FLASH。板内可扩展8块。利用三八译码器的输出作为选通信号。主要用于储存液晶屏显示数据:ARM芯片采用标准SPI接口。与显示板交互数据:带有标准的232/485接口。用于上位机通讯及通讯口功能的扩展。如打印机等。
系统程序由主程序和定时器上溢中断程序组成。
主程序负责 DSP系统初始化和变量初始化。完成对三相系统的采样。执行图4a中的控制算法,包括数字锁相环、电压PI调节以及id的计算;图4b所示的中断程序负责三相滞环比较控制。 4 仿真与实验
在不对称谐波负荷情况下,使用电力仿真软件EMTP进行了仿真(波形略)。从仿真结果来看,补偿前的三相系统电流,屯波形不对称、非正弦,且含有大量谐波;补偿后ih,讥,ik对称且与系统电压同相位。
图5示出采用所设诗的APF进行补偿后的实测波形。对比两图,补偿后谐波含量明显减小,APF谐波补偿效果明显。
5 结论
针对三相系统设计了一种基于DSP—ARM全数字控制的并联有源电力滤波器。采用了基于能量守恒原理的直流侧电压控制方法,该方法能对谐波实现全补偿。并且该控制策略对于不平衡的三相系统仍然有效。对不对称谐波源进行补偿后可使三相电流保持对称。仿真与实际测试结果表明了该控制策略的正确性。可使系统具有良好的谐波抑制特性和响应速度。 |