- /* --COPYRIGHT--,BSD
- * Copyright (c) 2015, Texas Instruments Incorporated
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * * Neither the name of Texas Instruments Incorporated nor the names of
- * its contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
- * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
- * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
- * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- * --/COPYRIGHT--*/
- //*****************************************************************************
- // QmathLib_signal_FFT_ex4: Qmath signal generator and complex FFT example.
- //
- // Generate an input signal based on an array of wave descriptors. Each wave
- // descriptor is composed of a frequency, amplitude and phase angle. The
- // input signal is constructed with a size of SAMPLES and assumes a sample
- // frequency defined by SAMPLE_FREQUENCY. The real component of the input
- // consists of the summation of all the waves at that time index and the
- // imaginary component is set to zero.
- //
- // The input array is passed into the complex FFT function which performs
- // the FFT in-place using radix-2. The result of the cFFT is stored in the
- // input array and is scaled by SAMPLES.
- //
- // The result is used to calculate the magnitude and phase angle at each
- // frequency bin up to SAMPLES/2 (Nyquist frequency). The magnitude and phase
- // angles are stored in data memory and should approximate the original
- // signal composition. Because the input signal did not have any imaginary
- // components the magnitude will be halved. The results can be printed with
- // the printf function if ALLOW_PRINTF is defined.
- //
- // B. Peterson
- // Texas Instruments Inc.
- // May 2014
- // Built with CCS version 6.0.0.00190 and IAR Embedded Workbench version 6.10.1
- //*****************************************************************************
- #include "msp430.h"
- #include <stdio.h>
- #include <stdlib.h>
- #include <stdint.h>
- /* Select the global Q value and include the Qmath header file. */
- #define GLOBAL_Q 12
- #include "QmathLib.h"
- /* Specify the sample size and sample frequency. */
- #define SAMPLES 64 // <= 256, power of 2
- #define SAMPLE_FREQUENCY 8192 // <= 16384
- /* Access the real and imaginary parts of an index into a complex array. */
- #define RE(x) (((x)<<1)+0) // access real part of index
- #define IM(x) (((x)<<1)+1) // access imaginary part of index
- /*
- * Input and result buffers. These can be viewed in memory or printed by
- * defining ALLOW_PRINTF.
- */
- _q qInput[SAMPLES*2]; // Input buffer of complex values
- _q qMag[SAMPLES/2]; // Magnitude of each frequency result
- _q qPhase[SAMPLES/2]; // Phase of each frequency result
- /* Misc. definitions. */
- #define PI 3.1415926536
- /* Structure that describes a single wave to be used to construct the signal */
- typedef struct wave {
- int16_t frequency; // Frequency in Hz
- _q amplitude; // Amplitude of the signal
- _q phase; // Phase angle in radians
- } wave;
- /*
- * Specify wave structures that will be used to construct the input signal to
- * the complex FFT function.
- */
- const wave signals[] = {
- /* Frequency (Hz) Magnitude Phase angle (radians) */
- {128, _Q(0.5), _Q(PI/2)},
- {512, _Q(2.0), _Q(0)},
- {2048, _Q(1.333), _Q(-PI/2)}
- };
- /* Calculate the number of wave structures that have been provided. */
- #define NUM_WAVES (sizeof(signals)/sizeof(wave))
- //#define ALLOW_PRINTF // allow usage of printf to print results
- #ifdef ALLOW_PRINTF
- char cMagBuffer[10]; // Character buffer for printing magnitude
- char cPhaseBuffer[10]; // Character buffer for printing phase
- char cFrequencyBuffer[10]; // Character buffer for printing frequency
- #endif
- extern void cFFT(_q *input, int16_t n);
- int main(void)
- {
- int16_t i, j; // loop counters
- _q qWaveCurrentAngle[NUM_WAVES]; // input angles for each signal
-
- /* Disable WDT. */
- WDTCTL = WDTPW + WDTHOLD;
-
- /* Set the initial input angles. */
- for (i = 0; i < NUM_WAVES; i++) {
- qWaveCurrentAngle[i] = signals[i].phase;
- }
-
- /* Construct the input signal from the wave structures. */
- for (i = 0; i < SAMPLES; i++) {
- qInput[RE(i)] = 0;
- qInput[IM(i)] = 0;
- for (j = 0; j < NUM_WAVES; j++) {
- /*
- * input[RE] += cos(angle)*amplitude
- * angle += 2*pi*freq/sample_freq
- */
- qInput[RE(i)] += _Qmpy(_Qcos(qWaveCurrentAngle[j]), signals[j].amplitude);
- qWaveCurrentAngle[j] += _Qmpy(_Q(2*PI), _Qdiv(signals[j].frequency, SAMPLE_FREQUENCY));
- if (qWaveCurrentAngle[j] > _Q(PI)) {
- qWaveCurrentAngle[j] -= _Q(2*PI);
- }
- }
- }
-
- /*
- * Perform a complex FFT on the input samples. The result is calculated
- * in-place and will be stored in the input buffer.
- */
- cFFT(qInput, SAMPLES);
-
- /* Calculate the magnitude and phase angle of the results. */
- for (i = 0; i < SAMPLES/2; i++) {
- qMag[i] = _Qmag(qInput[RE(i)], qInput[IM(i)]);
- qPhase[i] = _Qatan2(qInput[IM(i)], qInput[RE(i)]);
- }
-
- /* Print the results. */
- #ifdef ALLOW_PRINTF
- for (i = 0; i < SAMPLES/2; i++) {
- _Qtoa(cMagBuffer, "%2.4f", qMag[i]);
- _Qtoa(cPhaseBuffer, "%2.4f", qPhase[i]);
- _Q1toa(cFrequencyBuffer, "%5.0f", _Q1mpyI16(_Q1(SAMPLE_FREQUENCY/SAMPLES), i));
- printf("%sHz: mag = %s, phase = %s radians\n",
- cFrequencyBuffer, cMagBuffer, cPhaseBuffer);
- }
- #endif
-
- return 0;
- }
- extern void cBitReverse(_q *input, int16_t n);
- /*
- * Perform in-place radix-2 DFT of the input signal with size n.
- *
- * This function has been written for any input size up to 256. This function
- * can be optimized by using lookup tables with precomputed twiddle factors for
- * a fixed sized FFT, using Q15 format for the twiddle factors and inlining the
- * multiplication steps with direct access to the MPY32 hardware peripheral.
- */
- void cFFT(_q *input, int16_t n)
- {
- int16_t s, s_2; // step
- uint16_t i, j; // loop counters
- _q qTAngle; // twiddle factor angle
- _q qTIncrement; // twiddle factor increment
- _q qTCos, qTSin; // complex components of twiddle factor
- _q qTempR, qTempI; // temp result complex pair
-
- /* Bit reverse the order of the inputs. */
- cBitReverse(input, n);
-
- /* Set step to 2 and initialize twiddle angle increment. */
- s = 2;
- s_2 = 1;
- qTIncrement = _Q(-2*PI);
-
- while (s <= n) {
- /* Reset twiddle angle and halve increment factor. */
- qTAngle = 0;
- qTIncrement = _Qdiv2(qTIncrement);
-
- for (i = 0; i < s_2; i++) {
- /* Calculate twiddle factor complex components. */
- qTCos = _Qcos(qTAngle);
- qTSin = _Qsin(qTAngle);
- qTAngle += qTIncrement;
-
- for (j = i; j < n; j += s) {
- /* Multiply complex pairs and scale each stage. */
- qTempR = _Qmpy(qTCos, input[RE(j+s_2)]) - _Qmpy(qTSin, input[IM(j+s_2)]);
- qTempI = _Qmpy(qTSin, input[RE(j+s_2)]) + _Qmpy(qTCos, input[IM(j+s_2)]);
- input[RE(j+s_2)] = _Qdiv2(input[RE(j)] - qTempR);
- input[IM(j+s_2)] = _Qdiv2(input[IM(j)] - qTempI);
- input[RE(j)] = _Qdiv2(input[RE(j)] + qTempR);
- input[IM(j)] = _Qdiv2(input[IM(j)] + qTempI);
- }
- }
- /* Multiply step by 2. */
- s_2 = s;
- s = _Qmpy2(s);
- }
- }
- /*
- * Perform an in-place bit reversal of the complex input array with size n.
- * Use a look up table to speed up the process. Valid for size of 256 and
- * smaller.
- */
- void cBitReverse(_q *input, int16_t n)
- {
- uint16_t i, j; // loop counters
- int16_t i16BitRev; // index bit reversal
- _q qTemp;
-
- extern const uint8_t ui8BitRevLUT[256];
-
- /* In-place bit-reversal. */
- for (i = 0; i < n; i++) {
- i16BitRev = ui8BitRevLUT[i];
- for (j = n; j < 256; j <<= 1) {
- i16BitRev >>= 1;
- }
- if (i < i16BitRev) {
- /* Swap inputs. */
- qTemp = input[RE(i)];
- input[RE(i)] = input[RE(i16BitRev)];
- input[RE(i16BitRev)] = qTemp;
- qTemp = input[IM(i)];
- input[IM(i)] = input[IM(i16BitRev)];
- input[IM(i16BitRev)] = qTemp;
- }
- }
- }
- /* 8-bit reversal lookup table. */
- const uint8_t ui8BitRevLUT[256] = {
- 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
- 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
- 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
- 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
- 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
- 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
- 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
- 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
- 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
- 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
- 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
- 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
- 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
- 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
- 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
- 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
- };