带隙电压(VBG)是内部固定基准电压,无论电源如何变化。 VBG的输出内部连接到ADC通道多路复用器和模拟比较器(ACMP)负输入端。因此可以通过VBG的A / D转换结果来计算AVDD的电压。
当AVDD直接连接到电源时,VBG可用于计算AVDD电压。与传统分压电路相比,使用VBG可以减少外部元件和功耗。
由于工艺变化,每个芯片的VBG可能略有不同。因此,计算出的AVDD可能会有一些偏差。 M031 /M032系列芯片出厂时,都具有内置的VBG A / D转换值(当AVDD = 3072 mV时)。利用内置的VBG A / D转换值和当前的VBG A / D转换值,用户可以更准确地计算AVDD,与仅使用VBG A / D转换值相比来说更为准确。
/**************************************************************************//**
* [url=home.php?mod=space&uid=288409]@file[/url] main.c
* [url=home.php?mod=space&uid=895143]@version[/url] V3.00
* [url=home.php?mod=space&uid=247401]@brief[/url] Demonstrate how to calculate battery voltage( AVdd ) by using band-gap.
*
* SPDX-License-Identifier: Apache-2.0
* [url=home.php?mod=space&uid=17282]@CopyRight[/url] (C) 2018 Nuvoton Technology Corp. All rights reserved.
******************************************************************************/
#include <stdio.h>
#include "NuMicro.h"
/*---------------------------------------------------------------------------------------------------------*/
/* Define global variables and constants */
/*---------------------------------------------------------------------------------------------------------*/
volatile uint32_t g_u32AdcIntFlag;
volatile uint32_t g_u32BandGapConvValue;
/**
* @brief Read Built-in Band-Gap conversion value
* @param[in] None
* [url=home.php?mod=space&uid=266161]@return[/url] Built-in Band-Gap conversion value
* [url=home.php?mod=space&uid=1543424]@Details[/url] This function is used to read Band-Gap conversion value.
*/
__STATIC_INLINE uint32_t FMC_ReadBandGap(void)
{
FMC->ISPCMD = FMC_ISPCMD_READ_UID; /* Set ISP Command Code */
FMC->ISPADDR = 0x70u; /* Must keep 0x70 when read Band-Gap */
FMC->ISPTRG = FMC_ISPTRG_ISPGO_Msk; /* Trigger to start ISP procedure */
#if ISBEN
__ISB();
#endif /* To make sure ISP/CPU be Synchronized */
while(FMC->ISPTRG & FMC_ISPTRG_ISPGO_Msk) {} /* Waiting for ISP Done */
return FMC->ISPDAT & 0xFFF;
}
void SYS_Init(void)
{
/* Unlock protected registers */
SYS_UnlockReg();
/* Enable HIRC clock (Internal RC 48 MHz) */
CLK_EnableXtalRC(CLK_PWRCTL_HIRCEN_Msk);
/* Wait for HIRC clock ready */
CLK_WaitClockReady(CLK_STATUS_HIRCSTB_Msk);
/* Select HCLK clock source as HIRC and HCLK source divider as 1 */
CLK_SetHCLK(CLK_CLKSEL0_HCLKSEL_HIRC, CLK_CLKDIV0_HCLK(1));
/* Enable module clock */
CLK_EnableModuleClock(UART0_MODULE);
CLK_EnableModuleClock(ADC_MODULE);
/* Switch UART0 clock source to HIRC */
CLK_SetModuleClock(UART0_MODULE, CLK_CLKSEL1_UART0SEL_HIRC, CLK_CLKDIV0_UART0(1));
/* Switch ADC clock source to HIRC, set divider to 2, ADC clock is 48/2 MHz */
CLK_SetModuleClock(ADC_MODULE, CLK_CLKSEL2_ADCSEL_PCLK1, CLK_CLKDIV0_ADC(2));
/* Update System Core Clock */
/* User can use SystemCoreClockUpdate() to calculate PllClock, SystemCoreClock and CycylesPerUs automatically. */
SystemCoreClockUpdate();
/*----------------------------------------------------------------------*/
/* Init I/O Multi-function */
/*----------------------------------------------------------------------*/
/* Set GPB multi-function pins for UART0 RXD and TXD */
SYS->GPB_MFPH = (SYS->GPB_MFPH & ~(SYS_GPB_MFPH_PB12MFP_Msk | SYS_GPB_MFPH_PB13MFP_Msk)) |
(SYS_GPB_MFPH_PB12MFP_UART0_RXD | SYS_GPB_MFPH_PB13MFP_UART0_TXD);
/* Lock protected registers */
SYS_LockReg();
}
void ADC_FunctionTest()
{
int32_t i32ConversionData;
int32_t i32BuiltInData;
printf("\n");
printf("+----------------------------------------------------------------------------+\n");
printf("| ADC for calculate battery voltage( AVdd ) by using band-gap test |\n");
printf("+----------------------------------------------------------------------------+\n\n");
printf("+----------------------------------------------------------------------+\n");
printf("| ADC clock source -> PCLK1 = 48 MHz |\n");
printf("| ADC clock divider = 2 |\n");
printf("| ADC clock = 48 MHz / 2 = 24 MHz |\n");
printf("| ADC extended sampling time = 71 |\n");
printf("| ADC conversion time = 17 + ADC extended sampling time = 88 |\n");
printf("| ADC conversion rate = 24 MHz / 88 = 272.7 ksps |\n");
printf("+----------------------------------------------------------------------+\n");
/* Enable ADC converter */
ADC_POWER_ON(ADC);
/* Set input mode as single-end, Single mode, and select channel 29 (band-gap voltage) */
ADC_Open(ADC, ADC_ADCR_DIFFEN_SINGLE_END, ADC_ADCR_ADMD_SINGLE, BIT29);
/* To sample band-gap precisely, the ADC capacitor must be charged at least 3 us for charging the ADC capacitor ( Cin )*/
/* Sampling time = extended sampling time + 1 */
/* 1/24000000 * (Sampling time) = 3 us */
ADC_SetExtendSampleTime(ADC, 0, 71);
/* Clear the A/D interrupt flag for safe */
ADC_CLR_INT_FLAG(ADC, ADC_ADF_INT);
/* Enable the sample module interrupt. */
ADC_ENABLE_INT(ADC, ADC_ADF_INT); // Enable sample module A/D interrupt.
NVIC_EnableIRQ(ADC_IRQn);
printf(" Press any key to start the test\n\n");
getchar();
/* Reset the ADC interrupt indicator and trigger sample module to start A/D conversion */
g_u32AdcIntFlag = 0;
ADC_START_CONV(ADC);
/* Wait ADC conversion done */
while(g_u32AdcIntFlag == 0);
/* Disable the A/D interrupt */
ADC_DISABLE_INT(ADC, ADC_ADF_INT);
/* Get the conversion result of the channel 29 */
i32ConversionData = ADC_GET_CONVERSION_DATA(ADC, 29);
/* Enable FMC ISP function to read built-in band-gap A/D conversion result*/
SYS_UnlockReg();
FMC_Open();
i32BuiltInData = FMC_ReadBandGap();
/* Use Conversion result of Band-gap to calculating AVdd */
printf(" AVdd i32BuiltInData \n");
printf(" ---------- = ------------------------- \n");
printf(" 3072 i32ConversionData \n");
printf(" \n");
printf("AVdd = 3072 * i32BuiltInData / i32ConversionData \n\n");
printf("Built-in band-gap A/D conversion result: 0x%X (%d) \n", i32BuiltInData, i32BuiltInData);
printf("Conversion result of Band-gap: 0x%X (%d) \n\n", i32ConversionData, i32ConversionData);
printf("AVdd = 3072 * %d / %d = %d mV \n\n", i32BuiltInData, i32ConversionData, 3072*i32BuiltInData/i32ConversionData);
}
void ADC_IRQHandler(void)
{
g_u32AdcIntFlag = 1;
ADC_CLR_INT_FLAG(ADC, ADC_ADF_INT); /* Clear the A/D interrupt flag */
}
/*----------------------------------------------------------------------*/
/* Init UART0 */
/*----------------------------------------------------------------------*/
void UART0_Init(void)
{
/* Reset UART0 */
SYS_ResetModule(UART0_RST);
/* Configure UART0 and set UART0 baud rate */
UART_Open(UART0, 115200);
}
int32_t main(void)
{
/* Init System, IP clock and multi-function I/O. */
SYS_Init();
/* Init UART0 for printf */
UART0_Init();
printf("\nSystem clock rate: %d Hz", SystemCoreClock);
/* ADC function test */
ADC_FunctionTest();
/* Disable ADC IP clock */
CLK_DisableModuleClock(ADC_MODULE);
/* Disable External Interrupt */
NVIC_DisableIRQ(ADC_IRQn);
printf("Exit ADC sample code\n");
while(1);
}
|