目标检测和识别是计算机视觉系统的一个必不可少的组成部分。在计算机视觉中,首先是将场景分解成计算机可以看到和分析的组件。
计算机视觉的第一步是特征提取,即检测图像中的关键点并获取有关这些关键点的有意义信息。特征提取过程本身包含四个基本阶段:图像准备、关键点检测、描述符生成和分类。实际上,这个过程会检查每个像素,以查看是否有特征存在于该像素中。
特征提取算法将图像描述为指向图像中的关键元素的一组特征向量。本文将回顾一系列的特征检测算法,在这个过程中,看看一般目标识别和具体特征识别在这些年经历了怎样的发展。
早期特征检测器
Scale Invariant Feature Transform (SIFT)以及 Good Features To Track (GFTT) 是特征提取技术的早期实现。但这些属于计算密集型算法,涉及到大量的浮点运算,所以它们不适合实时嵌入式平台。
以SIFT为例,这种高精度的算法,在许多情况下都能产生不错的结果。它会查找具有子像素精度的特征,但只保留类似于角落的特征。而且,尽管 SIFT 非常准确,但要实时实现也很复杂,并且通常使用较低的输入图像分辨率。
316d7e4441d8cf3905fdc384ea03e7ba.jpg (43.37 KB, 下载次数: 5)
下载附件
2015-9-21 09:47 上传 |