打印
[资料分享]

TI博文--设备级特性和包选项如何帮助最小化汽车设计中的emi

[复制链接]
510|1
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
xyz549040622|  楼主 | 2020-8-23 16:47 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
This article was co-authored by Sam Jaffe.

As automotive systems continue to evolve, the number of applications requiring additional power continues to increase. Engineers designing higher-power systems often switch from low-dropout (LDO) regulators to DC/DC buck converters, given the latter’s improved efficiency and thermal performance. Unfortunately, making this switch comes at a cost, since DC/DC buck converters have considerably higher electromagnetic interference (EMI) than the LDO regulators they replace.
Because EMI can affect sensitive components such as the AM/FM radio receiver and driving-assist sensors, and because significant EMI can actually degrade or even prevent proper system operation, official standards like Comité International Spécial des Perturbations Radioélectriques (CISPR) 25 Class 5 set EMI limits for vehicles and boats with internal combustion engines.
Outsmarting board layout limitations
One of the easiest ways to mitigate EMI is with the right printed circuit board (PCB) layout. For a buck converter, your most important considerations are:
  • Reducing the surface area of high transient voltage (dv/dt) nodes.
  • Reducing the loop area of high transient current (di/dt) loops.
These considerations dictate the placement of certain components that, when done properly, can help minimize EMI.
A board’s size or shape can limit certain component placements, however, and the time and cost required to perform board spins may be prohibitive. So what are your options if you have such constraints but need to remain under CISPR 25 Class 5 EMI limits in your application?
If it’s not possible to optimize your layout for EMI, there are DC/DC converters with layout-agnostic package and feature improvements at the device level that can help mitigate EMI when an EMI-optimized layout isn’t an option.
EMI-friendly device-level features
Spread spectrum is a feature that dithers the switching frequency to spread the harmonic peaks of EMI caused by the switch node. Spreading the energy of the higher harmonic peaks turns tall, sharp emissions into low, smooth emissions, which in turn reduces the amount of filtering and optimization needed for a design to fall under emissions limits.
Slew-rate control reduces the turnon time of the high-side field-effect transistor (FET), which reduces energy in the high-frequency harmonics. Simply add a small resistor in series with the boot capacitor, or use a boot resistor on the dedicated RBOOT pin of devices that have this feature built-in. Slowing the slew of the FETs improves EMI but decreases efficiency, however.

EMI-friendly packages
Package-level features that can help suppress EMI include TI’s HotRod™ flip-chip-on-leadframe package, which has no internal bond wires; see Figure 1. Removing inductive bond wires in the path of the high di/dt loop of the input capacitors’ discontinuous current eliminates a significant source of input loop inductance and satisfies one of the primary considerations I mentioned earlier – reducing the area of high di/dt loops.

Figure 1: Cross-section of a standard wire-bond quad flat no-lead package and a HotRod package
Another package-level feature is the use of a symmetrical pinout for critical paths. DC/DC buck converters such as the LMR33630-Q1, LMR36015-Q1, LM61460-Q1 and LMQ61460-Q1 have a switch-node pin in the center with PGND and VIN on either side.. Such symmetry creates magnetic fields that provide better field containment and reduce coupling to nearby circuits.
Integrated input capacitors
To mitigate EMI even further at the device level, products such as the LMQ61460-Q1 now integrate input capacitors inside the package. Figure 2a represents these capacitors as dark rectangles straddling upper- and lower-right pin pairs VIN and PGND. Refer to Figure 2b for the pinout. Including input capacitors inside the package reduces parasitic inductance, ringing and high-frequency EMI (again satisfying the second consideration). High-frequency EMI is particularly important because problems in the high-frequency range can become worse in the presence of higher input voltages and higher output currents – conditions common in automotive applications.
(a)                                                     (b)
Figure 2: X-ray image of the LMQ61460-Q1 with integrated capacitors (a); LMQ61460-Q1 pinout (b)
EMI does present challenges in automotive applications. But board layout constraints don’t automatically mean that you’re out of options. Device-level features and modern package types offer reliable EMI mitigation techniques so that you can improve your designs and confidently remain under EMI emissions limits.

使用特权

评论回复

相关帖子

沙发
xyz549040622|  楼主 | 2020-8-23 16:48 | 只看该作者
[tr]随着汽车系统的不断发展,需要额外电力的应用程序的数量继续增加。设计高功率系统的工程师通常从低损耗(LDO)调节器切换到DC/DC BUCK变换器,因为后者提高了效率和热性能。不幸的是,使这个开关是要付出代价的,因为DC/DC BUCK变换器的电磁干扰(EMI)比他们所取代的LDO调节器要高得多。
[tr]由于电磁干扰可以影响敏感部件,如AM/FM无线电接收器和辅助驾驶传感器,而且由于重大的电磁干扰实际上可以降低甚至阻止适当的系统运行,因此,国际无线电干扰委员会(CISPR)25级的官方标准对装有内燃机的车辆和船只设定了EMI限制。
智能板布局限制
[tr]减轻电磁干扰最简单的方法之一是正确的印刷电路板(PCB)布局。对于BUCK转换器来说,最重要的考虑是:
  • [tr]减小高暂态电压(dV/dt)节点的表面积。
  • [tr]减小大暂态电流(di/dt)回路的环面积。
[tr]这些考虑因素决定了某些组件的位置,如果处理得当,这些组件可以帮助最小化EMI。
[tr]一个板的大小或形状可以限制某些部件的放置,但是,执行板旋转所需的时间和成本可能会令人望而却步。那么,如果您有这样的限制,但需要在您的应用程序中保持在CISPR 25类5级EMI限制下,您的选择是什么?
[tr]如果不可能为EMI优化您的布局,则有一些DC/DC转换器具有与布局无关的包,并且在设备级别上进行了功能改进,可以帮助在EMI优化的布局不是选项时帮助减轻EMI。
EMI友好设备级功能
[tr]扩频是一种抖动开关频率,扩展由开关节点引起的电磁干扰谐波峰的特性。将高次谐波峰值的能量分散,使高、尖锐的排放转化为低、平滑的排放,从而减少了设计达到排放限制所需的过滤和优化量。
[tr]旋转速率控制减少了高侧场效应晶体管(FET)的涡轮时间,从而降低了高频谐波中的能量.只需添加一个小电阻与启动电容器串联,或使用启动电阻在专用的RBOOT引脚的设备,有此功能内置。然而,放慢FETs的速度会提高EMI,但会降低效率。

EMI友好软件包
[tr]封装级的功能可以帮助抑制电磁干扰,包括TI的hotrod™倒装芯片上的框架封装,它没有内部键合线;见图1。在输入电容器的不连续电流的高di/dt回路的路径上除去电感键线,消除了一个重要的输入环电感源,并满足了我前面提到的主要考虑因素之一--减少了高di/dt环的面积。

图1:标准钢丝绳接合四方扁平无引线包和蹄形包的横截面
[tr]另一个包级的特性是使用对称的喷出来处理关键路径.DC/DC BUCK转换器,例如[tr]LMR 33630-Q1, [tr]LMR 36015-Q1, [tr]LM 61460-Q1[tr]和[tr]LMQ 61460-Q1[tr]中间有一个开关节点引脚,两边都有PGND和VIN。这种对称性创造了磁场,提供更好的磁场遏制和减少耦合附近的电路。
集成输入电容器
[tr]为了在设备级别进一步减轻emi,产品(如[tr]LMQ 61460-Q1[tr]现在集成在封装内的输入电容器。图2a将这些电容器表示为跨越右上、右下角的针对、VIN和PGND的暗矩形。如图2b所示。在封装中包括输入电容可以降低寄生电感、振铃和高频电磁干扰(再次满足第二个考虑)。高频电磁干扰特别重要,因为在较高的输入电压和较高的输出电流的存在下,高频范围内的问题可能变得更严重--这是汽车应用中常见的情况。
(A)(B)
[tr]图2:[tr]LMQ 61460-Q1[tr]集成电容器(A);[tr]LMQ 61460-Q1[tr]突出物(B)
[tr]EMI确实给汽车应用带来了挑战。但是板的布局限制并不意味着你就没有选择了。设备级功能和现代封装类型提供可靠的EMI缓解技术,使您可以改进您的设计,并有信心地保持在EMI排放限制。

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

个人签名:qq群: 嵌入式系统arm初学者 224636155←← +→→点击-->小 i 精品课全集,21ic公开课~~←←→→点击-->小 i 精品课全集,给你全方位的技能策划~~←←

2782

主题

19267

帖子

104

粉丝