/************FFT***********/
#include < stdio.h >
#include < math.h >
#include < stdlib.h >
#define N 1000
typedef struct
{
double real;
double img;
}
complex;
void fft(); /*快速傅里叶变换*/
void ifft(); /*快速傅里叶逆变换*/
void initW();
void change();
void add(complex, complex, complex * ); /*复数加法*/
void mul(complex, complex, complex * ); /*复数乘法*/
void sub(complex, complex, complex * ); /*复数减法*/
void divi(complex, complex, complex * ); /*复数除法*/
void output(); /*输出结果*/
complex x[N], * W; /*输出序列的值*/
int size_x = 0; /*输入序列的长度,只限2的N次方*/
double PI;
int main()
{
int i, method;
system("cls");
PI = atan(1) * 4;
printf("Please input the size of x:\n");
/*输入序列的长度*/
scanf("%d", & size_x);
printf("Please input the data in x[N]:(such as:5 6)\n");
/*输入序列对应的值*/
for (i = 0; i < size_x; i++)
scanf("%lf %lf", & x[i].real, & x[i].img);
initW();
/*选择FFT或逆FFT运算*/
printf("Use FFT(0) or IFFT(1)?\n");
scanf("%d", & method);
if (method == 0)
fft();
else
ifft();
output();
return 0;
}
/*进行基-2 FFT运算*/
void fft()
{
int i = 0, j = 0, k = 0, l = 0;
complex up, down, product;
change();
for (i = 0; i < log(size_x) / log(2); i++)
{
l = 1 << i;
for (j = 0; j < size_x; j += 2 * l)
{
for (k = 0; k < l; k++)
{
mul(x[j + k + l], W[size_x * k / 2 / l], & product);
add(x[j + k], product, & up);
sub(x[j + k], product, & down);
x[j + k] = up;
x[j + k + l] = down;
}
}
}
}
void ifft()
{
int i = 0, j = 0, k = 0, l = size_x;
complex up, down;
for (i = 0; i < (int)(log(size_x) / log(2)); i++) /*蝶形运算*/
{
l /= 2;
for (j = 0; j < size_x; j += 2 * l)
{
for (k = 0; k < l; k++)
{
add(x[j + k], x[j + k + l], & up);
up.real /= 2;
up.img /= 2;
sub(x[j + k], x[j + k + l], & down);
down.real /= 2;
down.img /= 2;
divi(down, W[size_x * k / 2 / l], & down);
x[j + k] = up;
x[j + k + l] = down;
}
}
}
change();
}
void initW()
{
int i;
W = (complex * ) malloc(sizeof(complex) * size_x);
for (i = 0; i < size_x; i++)
{
W[i].real = cos(2 * PI / size_x * i);
W[i].img = -1 * sin(2 * PI / size_x * i);
}
}
void change()
{
complex temp;
unsigned short i = 0, j = 0, k = 0;
double t;
for (i = 0; i < size_x; i++)
{
k = i;
j = 0;
t = (log(size_x) / log(2));
while ((t--) > 0)
{
j = j << 1;
j |= (k & 1);
k = k >> 1;
}
if (j > i)
{
temp = x[i];
x[i] = x[j];
x[j] = temp;
}
}
}
void output() /*输出结果*/
{
int i;
printf("The result are as follows\n");
for (i = 0; i < size_x; i++)
{
printf("%.4f", x[i].real);
if (x[i].img >= 0.0001)
printf("+%.4fj\n", x[i].img);
else if (fabs(x[i].img) < 0.0001)
printf("\n");
else
printf("%.4fj\n", x[i].img);
}
}
void add(complex a, complex b, complex * c)
{
c - > real = a.real + b.real;
c - > img = a.img + b.img;
}
void mul(complex a, complex b, complex * c)
{
c - > real = a.real * b.real - a.img * b.img;
c - > img = a.real * b.img + a.img * b.real;
}
void sub(complex a, complex b, complex * c)
{
c - > real = a.real - b.real;
c - > img = a.img - b.img;
}
void divi(complex a, complex b, complex * c)
{
c - > real = (a.real * b.real + a.img * b.img) / (
b.real * b.real + b.img * b.img);
c - > img = (a.img * b.real - a.real * b.img) / (b.real * b.real + b.img * b.img);
}