RTC(real time clock)实时时钟,在电脑、手机等电子产品中都有,应用较多。它的主要作用就是,在产品断电之后,时间还可以继续走数。这样我们在重新使用电子产品时,时间仍然正确。芯片本身可以通过纽扣电池供电,接下来我们一起学习一下RTC的驱动。
在官方文档中,给出了以下重要特点描述:
1、实时时钟系统可以计数时、分、秒、日、月、星期、区分闰年平年的年份等,最多支持2100年。
2、有31*8bit的存储容量的RAM。
3、实时时钟系统或者RAM的读写,可以单字节或者多字节(突发模式)进行数据传输。
在芯片计时过程中,可以准确的计出时分秒等,还有每个月各有多少天。有30、31、28、29天的区分,年份有闰年平年的区分。小时有12小时制和24小时制。有AM和PM的区分。
芯片的控制是通过CE、I/O(data line)和SCLK。数据线可以一次传输1字节或者31字节。
二、端口
图中的MCU在此时是指的我们的FPGA,那么,FPGA与芯片进行数据交互时,是通过三个串行线进行的,并且I/O为双端口类型。芯片的端口中,除了三个主控端口(CE、I/O、SCLK)外,还有X1和X2。
这两个端口为晶振接口,芯片需要一个外挂晶振来提供时钟,以便用来计时。VCC1和VCC2为两路电源,其中VCC2为板卡提供的电源,VCC1为纽扣电池供电。供电关系会在下面的管脚说明里面进行讲解。
GND为电源地。
三、管脚说明
四、命令格式
下图展示了命令字节,一个命令字节由数据的发送者决定。最高位必须为1,如果是0,将禁止向芯片写数据。bit6如果是0将与实时时钟系统通信,如果是1将与RAM通信。bit1到bit5为寄存器地址;bit0如果为0为写操作,1为读操作。
五、读写控制
首先是写操作,在8个SCLK时钟周期内,主机发送一个写命令字节,数据输入在接下来的8个SCLK时钟的上升沿,数据开始为bit0,也就是说,数据在发送时,从低位开始发送。
数据读操作,在8个SCLK时钟周期内,主机发送一个读命令,数据输出在接下来的8个SCLK时钟下降沿。第一个数据bit出现在命令字节最后一个bit被写入之后的第一个下降沿。通常数据传输需要在CE为高时。读数据时,也是从低位开始。
六、接口协议
基于芯片的读写方式,我们可以使用SPI协议进行数据读写,那么接下来我们介绍一下SPI协议。
SPI协议有四种模式,如下图:
SPI的四种模式是按照其时钟极性(CPOL)和时钟相位(CPHA)共同决定的,CPOL=0,即SCLK=0,表示SCLK时钟信号线在空闲状态时的电平为低电平,因此有效状态为高电平。CPHA=0,即表示在时钟的第一个岩信号进行采样。CPOL和CPHA共有四种组合,固有四种通信模式。
SPI为主从模式,在通信线上,需要4通信线:
CS – 从设备使能信号,由主设备控制
SCL – 时钟信号,由主设备产生
MISO – 主设备数据输入,从设备数据输出
MOSI – 主设备数据输出,从设备数据输入
但是,一般为了节省资源,会使用3跟通信线,分别为CE、SCL、SDA。其中SDA为双端口。数据的输出和输入都使用这条线。
在我们的DS1302时序图中,读写时序跟SPI的第一种模式一样,所以我们在写代码的时候可以使用SPI协议去写。
接下来我们开始新建工程写代码。
新建文件,按照写时序,通过线性序列机写出写模块。
代码如下:
同样的方式,新建文件读模块以及控制模块,代码如下:
在读写模块中,按照框架设计,计数器必须在使能有效的条件下进行,所以,在写计数器时,必须判断使能信号。
控制模块如下:
在控制模块中,我们前三个状态要把时间的初值写进芯片,比如我们写入时分秒,那么我们需要按照手册给出相应的命令。
在这里我们需要解释一下小时的数据格式。BIT7如果为0代表使用的是24小时制,如果为1代表使用的是12小时制。BIT6恒为0。BIT5,如果是12小时制,0代表上午,1代表下午,如果是24小时制,BIT5和BIT4共同组成了小时的十位。BIT3到BIT0为小时的个位。
顶层模块代码如下:
在这里需要大家注意的是三态门的编写。
作为输入时,将数据线置为高祖态。
仿真代码如下:
仿真图如下:
前三个状态,分别写入了时分秒等数据,3 4 5三个状态分别是读时分秒的状态,最后一个状态是做的延时,在一秒时间内,读出的数据是没有变化的,因此我们可以减少读操作的频率来降低工作频率。在rd_done信号拉高时,可以看到时分秒都有数据被赋值,及读出正常。