Conda搭建YOLOV5-V6.0环境0.前言 本章节主要记录如何搭建yolov5-v6.0环境,并支持CUDA加速。此文章的硬件要求如下,如果您的电脑没有显卡设备,这篇文章无法给您当做参考。 硬件与软件列表: - CPU:Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz 2.40 GHz
- 显卡:RTX 3060
- 系统:Windows 10 专业工作站版
1.搭建Python环境打开Conda终端,创建Python3.7的Conda环境,输入 [url=]复制[/url]
- conda create -n py37_yolov5 python=3.7
创建完成后,需要安装pytorch。 2.安装Pytorch和cuda两者的安装顺序没有要求,但都有版本要求。简而言之:两者版本需要对应,一个高版本和一个低版本会导致CUDA无法使用。 需要查了显卡驱动版本,查看方式如下: 如果客户的驱动版本过低,更新显卡驱动即可升级,更新方法可在网上自行搜索。 下面我安装CUDA11.3版本的,以满足更多客户的需要。 将复制出来的命令,粘贴至终端输入: [url=]复制[/url]
- conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
测试安装的pytorch是否可用 在Conda终端输入python后,加载torch模块,打印cuda是否可用。 [url=]复制[/url]
- (py37_yolov5) D:\Programmers\ModelDeployment\2.yolov5\yolov5-train\yolov5-6.0\yolov5-6.0>python
- Python 3.7.16 (default, Jan 17 2023, 16:06:28) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
- Type "help", "copyright", "credits" or "license" for more information.
- >>> import torch
- >>> torch.cuda.is_available()
- True
- >>> exit()
3.安装YOLOV5-V6.0版本依赖包安装前,查看已经安装的依赖包,输入pip list [url=]复制[/url]
- (py37_yolov5) D:\Programmers\ModelDeployment\2.yolov5\yolov5-train\yolov5-6.0\yolov5-6.0>pip list
- Package Version
- ----------------- --------
- certifi 2023.5.7
- cycler 0.11.0
- fonttools 4.38.0
- kiwisolver 1.4.4
- numpy 1.21.6
- packaging 23.1
- Pillow 9.2.0
- pip 22.3.1
- pyparsing 3.1.0
- python-dateutil 2.8.2
- setuptools 65.6.3
- six 1.16.0
- torch 1.10.0
- torchaudio 0.10.0
- torchvision 0.11.0
- typing_extensions 4.6.3
- wheel 0.38.4
- wincertstore 0.2
查看源码目录中的依赖文件requirements.txt可知,这里我不建议直接输入pip install -r requirements.txt [url=]复制[/url]
- # pip install -r requirements.txt
- # Base ----------------------------------------
- matplotlib>=3.2.2
- numpy>=1.18.5
- opencv-python>=4.1.2
- Pillow>=7.1.2
- PyYAML>=5.3.1
- requests>=2.23.0
- scipy>=1.4.1
- torch>=1.7.0
- torchvision>=0.8.1
- tqdm>=4.41.0
- # Logging -------------------------------------
- tensorboard>=2.4.1
- # wandb
- # Plotting ------------------------------------
- pandas>=1.1.4
- seaborn>=0.11.0
- # Export --------------------------------------
- # coremltools>=4.1# CoreML export
- # onnx>=1.9.0# ONNX export
- # onnx-simplifier>=0.3.6# ONNX simplifier
- # scikit-learn==0.19.2# CoreML quantization
- # tensorflow>=2.4.1# TFLite export
- # tensorflowjs>=3.9.0# TF.js export
- # Extras --------------------------------------
- # albumentations>=1.0.3
- # Cython# for pycocotools https://github.com/cocodataset/cocoapi/issues/172
- # pycocotools>=2.0# COCO mAP
- # roboflow
- thop# FLOPs computation
这里我建议在Conda命令中单独安装所需的依赖,查漏补缺,缺少了哪个依赖包就补充哪一个即可。 [url=]复制[/url]
- pip install opencv-python==4.7.0.68 -i https://pypi.doubanio.com/simple/
- pip install matplotlib==3.5.3 -i https://pypi.doubanio.com/simple/
- pip install PyYAML==6.0 -i https://pypi.doubanio.com/simple/
- pip install requests==2.28.2 -i https://pypi.doubanio.com/simple/
- pip install tqdm==4.64.1 -i https://pypi.doubanio.com/simple/
- pip install tensorboard==2.11.2 -i https://pypi.doubanio.com/simple/
- pip install pandas==1.1.5 -i https://pypi.doubanio.com/simple/
- pip install seaborn==0.12.2 -i https://pypi.doubanio.com/simple/
- pip install coremltools==4.1 -i https://pypi.doubanio.com/simple/
- pip install onnx==1.13.0 -i https://pypi.doubanio.com/simple/
- pip install onnxsim==0.4.13 -i https://pypi.doubanio.com/simple/
- pip install scikit-learn==0.19.2 -i https://pypi.doubanio.com/simple/
或者使用清华源 [url=]复制[/url]
- pip install opencv-python==4.7.0.68 -i https://pypi.tuna.tsinghua.edu.cn/simple
- pip install matplotlib==3.5.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
- pip install PyYAML==6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
- pip install requests==2.28.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
- pip install tqdm==4.64.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
- pip install tensorboard==2.11.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
- pip install pandas==1.1.5 -i https://pypi.tuna.tsinghua.edu.cn/simple
- pip install seaborn==0.12.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
- pip install coremltools==4.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
- pip install onnx==1.13.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
- pip install onnxsim==0.4.13 -i https://pypi.tuna.tsinghua.edu.cn/simple
- pip install scikit-learn==0.19.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
安装完成后,查看依赖包列表如下所示: [url=]复制[/url]
- Package Version
- ----------------------- --------
- absl-py 1.4.0
- attr 0.3.2
- attrs 23.1.0
- cachetools 5.3.0
- certifi 2023.5.7
- charset-normalizer 3.1.0
- colorama 0.4.6
- coremltools 4.1
- cycler 0.11.0
- fonttools 4.38.0
- google-auth 2.20.0
- google-auth-oauthlib 0.4.6
- grpcio 1.56.0
- idna 3.4
- importlib-metadata 6.6.0
- kiwisolver 1.4.4
- Markdown 3.4.3
- markdown-it-py 2.2.0
- MarkupSafe 2.1.2
- matplotlib 3.5.3
- mdurl 0.1.2
- mpmath 1.3.0
- numpy 1.19.5
- oauthlib 3.2.2
- onnx 1.13.0
- onnxsim 0.4.13
- opencv-python 4.7.0.68
- packaging 23.1
- pandas 1.1.5
- Pillow 9.2.0
- pip 22.3.1
- protobuf 3.20.3
- pyasn1 0.5.0
- pyasn1-modules 0.3.0
- Pygments 2.15.1
- pyparsing 3.1.0
- python-dateutil 2.8.2
- pytz 2023.3
- PyYAML 6.0
- requests 2.28.2
- requests-oauthlib 1.3.1
- rich 13.3.5
- rsa 4.9
- scikit-learn 0.19.2
- scipy 1.7.3
- seaborn 0.12.2
- setuptools 65.6.3
- six 1.16.0
- sympy 1.10.1
- tensorboard 2.11.2
- tensorboard-data-server 0.6.1
- tensorboard-plugin-wit1.8.1
- torch 1.10.0
- torchaudio 0.10.0
- torchvision 0.11.0
- tqdm 4.64.1
- typing_extensions 4.6.3
- urllib3 1.26.15
- Werkzeug 2.2.3
- wheel 0.38.4
- wincertstore 0.2
- zipp 3.15.0
4.测试YOLOV5环境4.1 测试检测模型进入YOLOV5源码目录后,输入python detect.py 可以看到已经可以检测出CUDA显卡设备号0。 [url=]复制[/url]
- YOLOv52021-10-12 torch 1.10.0 CUDA:0 (NVIDIA GeForce RTX 3060, 12287.5MB)
4.2 测试导出模型在终端输入 [url=]复制[/url]
- python export.py --weights yolov5s.pt --include onnx --dynamic
4.3 测试训练模型在终端输入 [url=]复制[/url]
|