#申请原创# @21小跑堂
1.DeepSeek
2025春节期间,DeepSeek火了……DeepSeek是由杭州深度求索人工智能基础技术研究有限公司开发的大型语言模型,不仅性能超过ChatGPT,运行的成本还远低于它。DeepSeek目前提供了2种使用方式,一是通过网页在线或者是APP软件可以进行免费的对话,二是通过API开放平台与DeepSeek服务器进行对接交互。
2.网页版DeepSeek
我们可以通过打开DeepSeek官网(https://www.deepseek.com),点击开始对话,就可以跳转到DeepSeek网页版(https://chat.deepseek.com/),与DeepSeek进行交流了。这个是免费使用的,当前使用人也比较多,经常会出现服务器忙的提示……
3.DeepSeek API开放平台
通过DeepSeek的API开放平台,我们可以将DeepSeek应用到我们的应用程序当中,通过接口调用与DeepSeek之间完成交互;在DeepSeek在线接口文档(https://api-docs.deepseek.com/zh-cn/)中阐述了当前支持的开发方式有CURL、PYTHON、GO、NODEJS、RUBY、CSHARP、PHP、JAVA、POWERSHELL等等……
在使用DeepSeek API开发平台之前,我们需要先注册一个DeepSeek账号,然后在API开放平台中创建一个API key,这个API key就是我们通过其它开发软件连接到DeepSeek的凭证。
通过API开放平台使用DeepSeek是收费的,收费标准是根据每百万输出tokens来计费的;对于我们想体验一下通过API开放平台来操作DeepSeek的开发人员,DeepSeep赠送了10块钱的体验优惠,前期足够我们来熟悉了掌握DeepSeek的API开放平台开发了。
4.MM32与DeepSeek
想要MM32 MCU与DeepSeek之间实现交互,在接口层面我们可以使用CURL方式,通过HTTP协议与DeepSeek的API开放平台完成;在硬件层面,我们需要扩展网络模块与MM32进行连接,达到联网的功能。这里我们使用Air724这个4G模组,与MM32之间通过串口通讯,基于AT指令来进行联网、HTTP等功能的操作。
5.硬件连接
硬件连接如下图所示,将Air724接口的RXD与Mini-F5333开发板上Arduino接口的TXD进行连接,将Air724接口的TXD与Mini-F5333开发板上Arduino接口的RXD进行连接,将Air724接口的GND与Mini-F5333开发板上Arduino接口的GND进行连接,将Air724接口的RST与Mini-F5333开发板上Arduino接口的INT进行连接;同时给Air724模块供12V电源,给Mini-F5333开发板供5V电源。
6.功能实现
首先是基于Mini-F5333开发板创建基础工程,实现板载LED灯和KEY按键检测,通过移植MultiButton开源软件实现按键处理操作;通过AT指令操作来实现Air724模组的初始化配置,在按下按键后,实现HTTP与DeepSeek的交互;在接收到DeepSeek反馈的数据后,通过cJSON来进行解析;处理过程和解析的结果通过SWD接口打印到电脑监视软件上(这边是通过移植SEGGER_RTT来实现打印的)。具体的代码模块如下所示:
6.1.基础工程配置
#include "platform.h"
#include "SEGGER_RTT.h"
volatile uint32_t PLATFORM_DelayTick = 0;
void PLATFORM_InitSysTick(void)
{
RCC_ClocksTypeDef RCC_Clocks;
RCC_GetClocksFreq(&RCC_Clocks);
if (SysTick_Config(RCC_Clocks.HCLK_Frequency / 1000))
{
while (1)
{
}
}
NVIC_SetPriority(SysTick_IRQn, 0x0);
}
void PLATFORM_ConfigDelay(void)
{
NVIC_InitTypeDef NVIC_InitStruct;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStruct;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE);
TIM_TimeBaseStructInit(&TIM_TimeBaseStruct);
TIM_TimeBaseStruct.TIM_Prescaler = (TIM_GetTIMxClock(TIM6) / 100000 - 1);
TIM_TimeBaseStruct.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStruct.TIM_Period = (100 - 1);
TIM_TimeBaseStruct.TIM_ClockDivision = TIM_CKD_Div1;
TIM_TimeBaseStruct.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM6, &TIM_TimeBaseStruct);
TIM_ITConfig(TIM6, TIM_IT_Update, ENABLE);
NVIC_InitStruct.NVIC_IRQChannel = TIM6_IRQn;
NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStruct.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStruct);
TIM_Cmd(TIM6, ENABLE);
}
void PLATFORM_DelayMs(uint32_t Tick)
{
PLATFORM_DelayTick = Tick;
while (PLATFORM_DelayTick)
{
}
}
void PLATFORM_InitConsole(void)
{
SEGGER_RTT_ConfigUpBuffer(0, "RTTUP", NULL, 0, SEGGER_RTT_MODE_NO_BLOCK_SKIP);
}
int fputc(int ch, FILE *f)
{
SEGGER_RTT_PutCharSkip(0, (char)ch);
return (ch);
}
void PLATFORM_PrintClocks(void)
{
printf("\r\nBOARD : Mini-F5333");
printf("\r\nMCU : MM32F5333D7P");
printf("\r\n");
switch (RCC->CFGR & RCC_CFGR_SWS_Msk)
{
case 0x00:
printf("\r\nHSI used as system clock source");
break;
case 0x04:
printf("\r\nHSE used as system clock source");
break;
case 0x08:
if (RCC->PLL1CFGR & RCC_PLL1CFGR_PLL1SRC_Msk)
{
printf("\r\nPLL1 (clocked by HSE) used as system clock source");
}
else
{
printf("\r\nPLL1 (clocked by HSI) used as system clock source");
}
break;
case 0x0C:
printf("\r\nLSI used as system clock source");
break;
default:
break;
}
RCC_ClocksTypeDef RCC_Clocks;
RCC_GetClocksFreq(&RCC_Clocks);
printf("\r\n");
printf("\r\nSYSCLK Frequency : %7.3f MHz", (double)RCC_Clocks.SYSCLK_Frequency / (double)1000000.0);
printf("\r\nHCLK Frequency : %7.3f MHz", (double)RCC_Clocks.HCLK_Frequency / (double)1000000.0);
printf("\r\nPCLK1 Frequency : %7.3f MHz", (double)RCC_Clocks.PCLK1_Frequency / (double)1000000.0);
printf("\r\nPCLK2 Frequency : %7.3f MHz", (double)RCC_Clocks.PCLK2_Frequency / (double)1000000.0);
printf("\r\n");
}
void PLATFORM_Init(void)
{
PLATFORM_InitSysTick();
PLATFORM_ConfigDelay();
PLATFORM_InitConsole();
PLATFORM_PrintClocks();
}
void TIM6_IRQHandler(void)
{
if (RESET != TIM_GetITStatus(TIM6, TIM_IT_Update))
{
if (PLATFORM_DelayTick)
{
PLATFORM_DelayTick--;
}
TIM_ClearITPendingBit(TIM6, TIM_IT_Update);
}
}
6.2.LED驱动
#include "bsp_led.h"
void bsp_LedInit(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB, ENABLE);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOC, ENABLE);
GPIO_StructInit(&GPIO_InitStruct);
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_10 ;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_High;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOB, &GPIO_InitStruct);
GPIO_StructInit(&GPIO_InitStruct);
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_6;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_High;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_WriteBit(GPIOB, GPIO_Pin_11, Bit_SET);
GPIO_WriteBit(GPIOB, GPIO_Pin_10, Bit_SET);
GPIO_WriteBit(GPIOC, GPIO_Pin_7, Bit_SET);
GPIO_WriteBit(GPIOC, GPIO_Pin_6, Bit_SET);
}
void bsp_LedToggle(uint8_t Index)
{
switch (Index)
{
case 1:
if (GPIO_ReadOutputDataBit(GPIOB, GPIO_Pin_11) == Bit_RESET)
{
GPIO_WriteBit(GPIOB, GPIO_Pin_11, Bit_SET);
}
else
{
GPIO_WriteBit(GPIOB, GPIO_Pin_11, Bit_RESET);
}
break;
case 2:
if (GPIO_ReadOutputDataBit(GPIOB, GPIO_Pin_10) == Bit_RESET)
{
GPIO_WriteBit(GPIOB, GPIO_Pin_10, Bit_SET);
}
else
{
GPIO_WriteBit(GPIOB, GPIO_Pin_10, Bit_RESET);
}
break;
case 3:
if (GPIO_ReadOutputDataBit(GPIOC, GPIO_Pin_7) == Bit_RESET)
{
GPIO_WriteBit(GPIOC, GPIO_Pin_7, Bit_SET);
}
else
{
GPIO_WriteBit(GPIOC, GPIO_Pin_7, Bit_RESET);
}
break;
case 4:
if (GPIO_ReadOutputDataBit(GPIOC, GPIO_Pin_6) == Bit_RESET)
{
GPIO_WriteBit(GPIOC, GPIO_Pin_6, Bit_SET);
}
else
{
GPIO_WriteBit(GPIOC, GPIO_Pin_6, Bit_RESET);
}
break;
default:
break;
}
}
6.3.KEY驱动
#include "bsp_key.h"
void bsp_KeyInit(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB, ENABLE);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOC, ENABLE);
GPIO_StructInit(&GPIO_InitStruct);
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IPD;
GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_StructInit(&GPIO_InitStruct);
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_5;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_StructInit(&GPIO_InitStruct);
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOB, &GPIO_InitStruct);
}
uint8_t bsp_KeyReadPinLevel(uint8_t Index)
{
uint8_t PinLevel = 0;
switch (Index)
{
case 1:
PinLevel = GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_4);
break;
case 2:
PinLevel = GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_5);
break;
case 3:
PinLevel = GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_1);
break;
case 4:
PinLevel = GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_2);
break;
default:
break;
}
return (PinLevel);
}
6.4.按键应用
#include "key.h"
#include "bsp_key.h"
#include "multi_button.h"
struct Button K1;
struct Button K2;
struct Button K3;
struct Button K4;
volatile uint8_t KeyRegisterFlag = 0;
volatile uint8_t KeyHttpPostFlag = 0;
void KEY_PressUpHandler(void *btn)
{
struct Button *handle = (struct Button *)btn;
switch (handle->button_id)
{
case 1:
printf("\r\nK1");
break;
case 2:
printf("\r\nK2");
break;
case 3:
printf("\r\nK3");
break;
case 4:
printf("\r\nK4"); KeyHttpPostFlag = 1;
break;
default:
break;
}
}
void KEY_Init(void)
{
button_init(&K1, bsp_KeyReadPinLevel, Bit_SET, 1);
button_init(&K2, bsp_KeyReadPinLevel, Bit_RESET, 2);
button_init(&K3, bsp_KeyReadPinLevel, Bit_RESET, 3);
button_init(&K4, bsp_KeyReadPinLevel, Bit_RESET, 4);
button_attach(&K1, PRESS_UP, KEY_PressUpHandler);
button_attach(&K2, PRESS_UP, KEY_PressUpHandler);
button_attach(&K3, PRESS_UP, KEY_PressUpHandler);
button_attach(&K4, PRESS_UP, KEY_PressUpHandler);
button_start(&K1);
button_start(&K2);
button_start(&K3);
button_start(&K4);
KeyRegisterFlag = 1;
}
void SysTick_Handler(void)
{
if (KeyRegisterFlag)
{
button_ticks();
}
}
6.5.Air724驱动
#include "bsp_air724.h"
#include "platform.h"
uint8_t Air724_RxBuffer[2048];
uint16_t Air724_RxLength = 0;
char deepseek_Buffer[2048];
void bsp_Air724InitUART(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
NVIC_InitTypeDef NVIC_InitStruct;
UART_InitTypeDef UART_InitStruct;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_UART4, ENABLE);
UART_StructInit(&UART_InitStruct);
UART_InitStruct.BaudRate = 115200;
UART_InitStruct.WordLength = UART_WordLength_8b;
UART_InitStruct.StopBits = UART_StopBits_1;
UART_InitStruct.Parity = UART_Parity_No;
UART_InitStruct.HWFlowControl = UART_HWFlowControl_None;
UART_InitStruct.Mode = UART_Mode_Rx | UART_Mode_Tx;
UART_Init(UART4, &UART_InitStruct);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOC, ENABLE);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource0, GPIO_AF_8);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource1, GPIO_AF_8);
GPIO_StructInit(&GPIO_InitStruct);
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_High;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_StructInit(&GPIO_InitStruct);
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOC, &GPIO_InitStruct);
UART_ITConfig(UART4, UART_IT_RX, ENABLE);
NVIC_InitStruct.NVIC_IRQChannel = UART4_IRQn;
NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStruct.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStruct);
UART_Cmd(UART4, ENABLE);
}
void bsp_Air724RxIrqHandler(uint8_t Data)
{
printf("%c", Data);
Air724_RxBuffer[Air724_RxLength] = Data;
Air724_RxLength += 1;
Air724_RxLength %= 2048;
}
void bsp_Air724InitGPIO(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOI, ENABLE);
GPIO_StructInit(&GPIO_InitStruct);
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_High;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOI, &GPIO_InitStruct);
GPIO_WriteBit(GPIOI, GPIO_Pin_0, Bit_SET);
}
void bsp_Air724Reset(void)
{
GPIO_WriteBit(GPIOI, GPIO_Pin_0, Bit_SET);
PLATFORM_DelayMs(100);
GPIO_WriteBit(GPIOI, GPIO_Pin_0, Bit_RESET);
PLATFORM_DelayMs(100);
}
void bsp_Air724ClearRxBuffer(void)
{
Air724_RxLength = 0;
for (uint16_t i = 0; i < 2048; i++)
{
Air724_RxBuffer[i] = 0;
}
}
void bsp_Air724Init(void)
{
bsp_Air724InitUART();
bsp_Air724InitGPIO();
bsp_Air724ClearRxBuffer();
}
void bsp_Air724SendData(uint8_t Data)
{
UART_SendData(UART4, Data);
while (RESET == UART_GetFlagStatus(UART4, UART_FLAG_TXC))
{
}
}
uint32_t bsp_Air724SendCommandBlocking(char *Command, char *Response, uint32_t Timeout)
{
if (Command != NULL)
{
while (*Command != '\0')
{
bsp_Air724SendData(*Command++);
}
bsp_Air724SendData(0x0D);
bsp_Air724SendData(0x0A);
}
if (Timeout != 0)
{
bsp_Air724ClearRxBuffer();
while (Timeout--)
{
if (strstr((char *)Air724_RxBuffer, Response) != NULL)
{
return (Timeout);
}
PLATFORM_DelayMs(1);
}
}
return (0);
}
void bsp_Air724InputDataNonBlocking(char *Data)
{
if (Data != NULL)
{
while (*Data != '\0')
{
bsp_Air724SendData(*Data++);
}
bsp_Air724SendData(0x1A);
}
}
6.6.HTTP初始化
void HTTP_Init(void)
{
bsp_Air724Reset();
bsp_Air724SendCommandBlocking(NULL, "RDY", 10000);
bsp_Air724SendCommandBlocking(NULL, "+NITZ", 10000);
PLATFORM_DelayMs(500);
bsp_Air724SendCommandBlocking("AT", "OK", 10000);
bsp_Air724SendCommandBlocking("AT+CPIN?", "OK", 10000);
bsp_Air724SendCommandBlocking("AT+CGATT?", "OK", 10000);
bsp_Air724SendCommandBlocking("AT+SAPBR=3,1,\"CONTYPE\",\"GPRS\"", "OK", 10000);
bsp_Air724SendCommandBlocking("AT+SAPBR=3,1,\"APN\",\"\"", "OK", 10000);
bsp_Air724SendCommandBlocking("AT+SAPBR=1,1", "OK", 10000);
bsp_Air724SendCommandBlocking("AT+SAPBR=2,1", "OK", 10000);
bsp_Air724SendCommandBlocking("AT+CGNSPWR=1", "OK", 10000);
bsp_Air724SendCommandBlocking("AT+CSQ", "OK", 10000);
bsp_Air724SendCommandBlocking("AT+CGNSAID=31,1,1,1", "OK", 10000);
}
6.7.HTTP与DeepSeek交互
char POST_DATA[] =
"{\
\"model\": \"deepseek-chat\",\
\"messages\": [{\"role\": \"user\", \"content\": \"who are you?\"}],\
\"stream\": false\
}";
void HTTP_Post(void)
{
char Command[200];
bsp_Air724SendCommandBlocking("AT+HTTPINIT", "OK", 10000);
bsp_Air724SendCommandBlocking("AT+HTTPSSL=1", "OK", 10000);
bsp_Air724SendCommandBlocking("AT+HTTPPARA=\"CID\",1", "OK", 10000);
bsp_Air724SendCommandBlocking("AT+HTTPPARA=\"URL\",\"https://api.deepseek.com/chat/completions\"", "OK", 10000);
bsp_Air724SendCommandBlocking("AT+HTTPPARA=\"CONTENT\",\"application/json\"", "OK", 10000);
bsp_Air724SendCommandBlocking("AT+HTTPPARA=\"USERDATA\",\"Authorization:Bearer API key\"", "OK", 10000);
memset(Command, 0, sizeof(Command));
sprintf(Command, "AT+HTTPDATA=%d,10000", strlen(POST_DATA));
bsp_Air724SendCommandBlocking(Command, "DOWNLOAD", 30000);
printf("\r\n%s", POST_DATA);
bsp_Air724InputDataNonBlocking(POST_DATA);
bsp_Air724SendCommandBlocking("AT+HTTPACTION=1", "OK", 30000);
bsp_Air724SendCommandBlocking(NULL, "+HTTPACTION: 1,200,", 30000);
bsp_Air724SendCommandBlocking("AT+HTTPREAD", "OK", 30000);
bsp_Air724RxHandler();
bsp_Air724SendCommandBlocking("AT+HTTPTERM", "OK", 10000);
}
6.8.DeepSeek数据处理
#include "cJSON.h"
void bsp_Air724RxHandler(void)
{
uint16_t Count = 0;
uint16_t Group = 0;
memset(deepseek_Buffer, 0, sizeof(deepseek_Buffer));
for (uint16_t i = 0; i < Air724_RxLength; i++)
{
if (Air724_RxBuffer[i] == '{')
{
Group++;
}
if (Group)
{
deepseek_Buffer[Count++] = Air724_RxBuffer[i];
}
if (Air724_RxBuffer[i] == '}')
{
if(Group) Group--;
}
}
printf("\r\n--------------------------------------------------------------------------------");
cJSON *cjson = cJSON_Parse(deepseek_Buffer);
char *json_data = cJSON_Print(cjson);
if (cjson == NULL)
{
printf("\r\ncjson error!!!");
}
else
{
printf("\r\n%s", json_data);
}
printf("\r\n--------------------------------------------------------------------------------");
printf("\r\n");
}
7.运行结果
MCU向DeepSeek发送了"who are you?"的提问,如下图,DeepSeek进行了回答“I’m an AI language model created by OpenAI……”
8.附件
软件工程代码:
Mini-F5333_Air724_21ic.zip
(502.76 KB)
|
|