在过去的五六年时间里,IC 工艺从130nm 快速发展到90nm 并随后很快进入当前的65nm 结点,工艺技术的每一次进步都使得功率管理变得更为重要。在130nm 节点时,IC 生产商就开始注意到晶体管的电流泄漏问题,即使在闲置模式下,晶体管也存在由于电流泄漏而带来的功率消耗。 进入90nm 工艺时代,IC 的工作电压进一步下降,但电流
泄漏问题更加严重,在器件的总功耗中占有相当大的比重。 对于65nm 工艺,这些趋势仍在延续。 事实上,对65nm工艺来说,电流泄漏问题如此严重,以致许多设计师认为功率管理与实现性能指标同样重要。
传统上FPGA 供应商的产品设计面向范围广泛的应用,器件包含大量的高速晶体管,因此FPGA 器件的功耗不容小视。 与其它采用最先进工艺进行设计的IC 一样,FPGA 也采用了电流泄漏较大的晶体管设计。 然而,对于PFGA来说,设计人员可以充分利用其可编程能力以及相关的工具来准确地估算功耗 然后再通过优化技术来使 FPGA 设计以及相应的PCB 板在功率方面效率更高。FPGA 器件的功率消耗主要有两类: 静态功耗和动态功耗。 静态功耗是由于晶体管的泄漏而引起的,因为即使不工作时晶体管仍然存在电流泄漏。 动
态功耗则是器件在执行任务时消耗的功率 – 与开关结点数量以及电压、频率和电容等有关。 要满足设计功率预算的要求,非常重要的就是要充分了解这两种功率消耗类型以及两种功耗类型在不同工作条件时的变化情况,从而可以更好地对其进行优化。
|