100个最小化SI(信号完整性)问题的通用设计规则:

[复制链接]
3807|0
 楼主| syzdq 发表于 2007-4-4 19:32 | 显示全部楼层 |阅读模式
摘自Prentice&nbsp;Hall&nbsp;-&nbsp;Signal&nbsp;Integrity&nbsp;Simplified:<br />全书请自行去我的FTP(pub/EDA文档/2006年4月7日以后加入/Electronics&nbsp;-&nbsp;Pcb&nbsp;-&nbsp;Prentice&nbsp;Hall&nbsp;-&nbsp;Signal&nbsp;Integrity&nbsp;Simplified.chm)或网上下载。<br /><br /><br />Appendix&nbsp;A.&nbsp;100&nbsp;General&nbsp;Design&nbsp;Guidelines&nbsp;to&nbsp;Minimize&nbsp;Signal-Integrity&nbsp;Problems<br />Never&nbsp;follow&nbsp;a&nbsp;rule&nbsp;blindly.&nbsp;Always&nbsp;understand&nbsp;its&nbsp;purpose&nbsp;and&nbsp;put&nbsp;in&nbsp;the&nbsp;numbers&nbsp;to&nbsp;evaluate&nbsp;its&nbsp;cost/benefit&nbsp;for&nbsp;your&nbsp;specific&nbsp;design.<br /><br />0.&nbsp;Always&nbsp;use&nbsp;the&nbsp;longest&nbsp;rise&nbsp;time&nbsp;you&nbsp;can.<br /><br />A.1&nbsp;Minimize&nbsp;Signal-Quality&nbsp;Problems&nbsp;on&nbsp;One&nbsp;Net<br />Strategy:&nbsp;Keep&nbsp;the&nbsp;instantaneous&nbsp;impedance&nbsp;the&nbsp;signal&nbsp;sees&nbsp;constant&nbsp;throughout&nbsp;its&nbsp;entire&nbsp;path.<br /><br />Tactics:<br /><br />1.Use&nbsp;controlled-impedance&nbsp;traces.<br /><br />2.Ideally,&nbsp;all&nbsp;signals&nbsp;should&nbsp;use&nbsp;the&nbsp;low-voltage&nbsp;planes&nbsp;as&nbsp;their&nbsp;reference&nbsp;planes.<br /><br />3.If&nbsp;different&nbsp;voltage&nbsp;planes&nbsp;are&nbsp;used&nbsp;as&nbsp;signal&nbsp;references,&nbsp;there&nbsp;should&nbsp;be&nbsp;tight&nbsp;coupling&nbsp;between&nbsp;them.&nbsp;Do&nbsp;so&nbsp;by&nbsp;using&nbsp;the&nbsp;thinnest&nbsp;dielectric&nbsp;you&nbsp;can&nbsp;afford&nbsp;and&nbsp;multiple,&nbsp;low-inductance&nbsp;decoupling&nbsp;capacitors&nbsp;between&nbsp;the&nbsp;different&nbsp;voltage&nbsp;planes.<br /><br />4.Use&nbsp;a&nbsp;2D&nbsp;field&nbsp;solver&nbsp;to&nbsp;calculate&nbsp;the&nbsp;stack-up&nbsp;design&nbsp;rules&nbsp;for&nbsp;the&nbsp;target&nbsp;characteristic&nbsp;impedance.&nbsp;Include&nbsp;the&nbsp;effects&nbsp;of&nbsp;solder-mask&nbsp;and&nbsp;trace&nbsp;thickness.<br /><br />5.Use&nbsp;series&nbsp;termination&nbsp;for&nbsp;point-to-point&nbsp;topologies,&nbsp;whether&nbsp;single&nbsp;or&nbsp;bidirectional.<br /><br />6.Terminate&nbsp;both&nbsp;ends&nbsp;of&nbsp;the&nbsp;buss&nbsp;in&nbsp;a&nbsp;multidrop&nbsp;bus.<br /><br />7.Keep&nbsp;the&nbsp;time&nbsp;delay&nbsp;of&nbsp;stubs&nbsp;less&nbsp;than&nbsp;20%&nbsp;of&nbsp;the&nbsp;rise&nbsp;time&nbsp;of&nbsp;the&nbsp;fastest&nbsp;signals.<br /><br />8.Place&nbsp;the&nbsp;terminating&nbsp;resistors&nbsp;as&nbsp;close&nbsp;to&nbsp;the&nbsp;package&nbsp;pads&nbsp;as&nbsp;possible.<br /><br />9.Don't&nbsp;worry&nbsp;about&nbsp;corners&nbsp;unless&nbsp;10&nbsp;fF&nbsp;of&nbsp;capacitance&nbsp;is&nbsp;important.<br /><br />10.Follow&nbsp;the&nbsp;return&nbsp;path&nbsp;of&nbsp;each&nbsp;signal&nbsp;and&nbsp;keep&nbsp;the&nbsp;width&nbsp;of&nbsp;the&nbsp;return&nbsp;path&nbsp;under&nbsp;each&nbsp;signal&nbsp;path&nbsp;at&nbsp;least&nbsp;as&nbsp;wide,&nbsp;and&nbsp;preferably&nbsp;at&nbsp;least&nbsp;3&nbsp;times&nbsp;as&nbsp;wide,&nbsp;as&nbsp;the&nbsp;signal&nbsp;trace.<br /><br />11.Route&nbsp;signal&nbsp;traces&nbsp;around&nbsp;rather&nbsp;than&nbsp;across&nbsp;return-path&nbsp;discontinuities.<br /><br />12.Avoid&nbsp;using&nbsp;engineering&nbsp;change&nbsp;wires&nbsp;in&nbsp;any&nbsp;signal&nbsp;path.<br /><br />13.Keep&nbsp;all&nbsp;nonuniform&nbsp;regions&nbsp;as&nbsp;short&nbsp;as&nbsp;possible.<br /><br />14.Do&nbsp;not&nbsp;use&nbsp;axial-lead&nbsp;terminating&nbsp;resistors&nbsp;for&nbsp;system&nbsp;rise&nbsp;times&nbsp;less&nbsp;than&nbsp;1&nbsp;nsec.&nbsp;Use&nbsp;SMT&nbsp;resistors&nbsp;and&nbsp;mount&nbsp;them&nbsp;for&nbsp;minimum&nbsp;loop&nbsp;inductance.<br /><br />15.When&nbsp;rise&nbsp;times&nbsp;are&nbsp;less&nbsp;than&nbsp;150&nbsp;psec,&nbsp;do&nbsp;everything&nbsp;possible&nbsp;to&nbsp;minimize&nbsp;the&nbsp;loop&nbsp;inductance&nbsp;of&nbsp;the&nbsp;terminating&nbsp;SMT&nbsp;resistors&nbsp;or&nbsp;consider&nbsp;using&nbsp;integrated&nbsp;or&nbsp;embedded&nbsp;resistors.<br /><br />16.Vias&nbsp;generally&nbsp;look&nbsp;capacitive.&nbsp;Minimizing&nbsp;the&nbsp;capture&nbsp;pads&nbsp;and&nbsp;increasing&nbsp;the&nbsp;antipad&nbsp;clearance&nbsp;diameter&nbsp;will&nbsp;help&nbsp;make&nbsp;the&nbsp;via&nbsp;look&nbsp;transparent.<br /><br />17.Consider&nbsp;adding&nbsp;a&nbsp;little&nbsp;capacitance&nbsp;to&nbsp;the&nbsp;pads&nbsp;of&nbsp;a&nbsp;low-cost&nbsp;connector&nbsp;to&nbsp;compensate&nbsp;for&nbsp;its&nbsp;typically&nbsp;higher&nbsp;inductance.<br /><br />18.Route&nbsp;all&nbsp;differential&nbsp;pairs&nbsp;with&nbsp;a&nbsp;constant&nbsp;differential&nbsp;impedance.<br /><br />19.Avoid&nbsp;all&nbsp;asymmetries&nbsp;in&nbsp;a&nbsp;differential&nbsp;pair.&nbsp;Whatever&nbsp;you&nbsp;do&nbsp;to&nbsp;one&nbsp;trace,&nbsp;do&nbsp;the&nbsp;same&nbsp;to&nbsp;the&nbsp;other.<br /><br />20.If&nbsp;the&nbsp;spacing&nbsp;between&nbsp;the&nbsp;traces&nbsp;in&nbsp;a&nbsp;differential&nbsp;pair&nbsp;has&nbsp;to&nbsp;change,&nbsp;adjust&nbsp;the&nbsp;line&nbsp;width&nbsp;to&nbsp;keep&nbsp;a&nbsp;constant&nbsp;differential&nbsp;impedance.<br /><br />21.If&nbsp;a&nbsp;delay&nbsp;line&nbsp;is&nbsp;to&nbsp;be&nbsp;added&nbsp;to&nbsp;one&nbsp;leg&nbsp;of&nbsp;a&nbsp;differential&nbsp;pair,&nbsp;add&nbsp;it&nbsp;near&nbsp;the&nbsp;beginning&nbsp;of&nbsp;the&nbsp;trace&nbsp;and&nbsp;keep&nbsp;the&nbsp;traces&nbsp;uncoupled&nbsp;in&nbsp;this&nbsp;region.<br /><br />22.It&nbsp;is&nbsp;okay&nbsp;to&nbsp;change&nbsp;the&nbsp;coupling&nbsp;in&nbsp;a&nbsp;differential&nbsp;pair&nbsp;as&nbsp;long&nbsp;as&nbsp;the&nbsp;differential&nbsp;impedance&nbsp;is&nbsp;maintained.<br /><br />23.In&nbsp;general,&nbsp;route&nbsp;differential-pair&nbsp;traces&nbsp;with&nbsp;as&nbsp;tight&nbsp;a&nbsp;coupling&nbsp;as&nbsp;practical.<br /><br />24.Decide&nbsp;on&nbsp;edge-&nbsp;versus&nbsp;broadside-coupled&nbsp;differential&nbsp;pairs,&nbsp;based&nbsp;on&nbsp;routing&nbsp;density,&nbsp;total&nbsp;board-thickness&nbsp;constraints,&nbsp;and&nbsp;ability&nbsp;of&nbsp;the&nbsp;fab&nbsp;vendor&nbsp;to&nbsp;maintain&nbsp;tight&nbsp;laminate&nbsp;thickness&nbsp;control.&nbsp;Performance&nbsp;wise,&nbsp;they&nbsp;can&nbsp;be&nbsp;equivalent.<br /><br />25.For&nbsp;any&nbsp;board-level&nbsp;differential&nbsp;pairs,&nbsp;there&nbsp;will&nbsp;be&nbsp;significant&nbsp;return&nbsp;current&nbsp;in&nbsp;the&nbsp;planes,&nbsp;so&nbsp;avoid&nbsp;all&nbsp;discontinuities&nbsp;in&nbsp;the&nbsp;return&nbsp;path.&nbsp;If&nbsp;there&nbsp;is&nbsp;a&nbsp;discontinuity,&nbsp;do&nbsp;exactly&nbsp;the&nbsp;same&nbsp;thing&nbsp;to&nbsp;each&nbsp;line&nbsp;in&nbsp;the&nbsp;pair.<br /><br />26.Worry&nbsp;about&nbsp;terminating&nbsp;the&nbsp;common&nbsp;signals&nbsp;only&nbsp;if&nbsp;the&nbsp;common-mode&nbsp;rejection&nbsp;ratio&nbsp;of&nbsp;the&nbsp;receiver&nbsp;is&nbsp;poor.&nbsp;Terminating&nbsp;the&nbsp;common&nbsp;signals&nbsp;will&nbsp;not&nbsp;eliminate&nbsp;the&nbsp;common&nbsp;signal,&nbsp;just&nbsp;minimize&nbsp;its&nbsp;ringing.<br /><br />27.If&nbsp;losses&nbsp;are&nbsp;important,&nbsp;use&nbsp;as&nbsp;wide&nbsp;a&nbsp;signal&nbsp;trace&nbsp;as&nbsp;possible,&nbsp;and&nbsp;never&nbsp;use&nbsp;a&nbsp;trace&nbsp;of&nbsp;less&nbsp;than&nbsp;5&nbsp;mils.<br /><br />28.If&nbsp;losses&nbsp;are&nbsp;important,&nbsp;keep&nbsp;traces&nbsp;as&nbsp;short&nbsp;as&nbsp;possible.<br /><br />29.If&nbsp;losses&nbsp;are&nbsp;important,&nbsp;do&nbsp;everything&nbsp;possible&nbsp;to&nbsp;minimize&nbsp;all&nbsp;capacitive&nbsp;discontinuities.<br /><br />30.If&nbsp;losses&nbsp;are&nbsp;important,&nbsp;engineer&nbsp;the&nbsp;signal-vias&nbsp;to&nbsp;have&nbsp;a&nbsp;50-Ohm&nbsp;impedance,&nbsp;which&nbsp;usually&nbsp;means&nbsp;do&nbsp;everything&nbsp;possible&nbsp;to&nbsp;decrease&nbsp;the&nbsp;barrel&nbsp;size,&nbsp;decrease&nbsp;the&nbsp;capture-pad&nbsp;size,&nbsp;and&nbsp;increase&nbsp;the&nbsp;antipad-clearance&nbsp;holes.<br /><br />31.If&nbsp;losses&nbsp;are&nbsp;important,&nbsp;use&nbsp;as&nbsp;low&nbsp;a&nbsp;dissipation-factor&nbsp;laminate&nbsp;as&nbsp;you&nbsp;can&nbsp;afford.<br /><br />32.Consider&nbsp;using&nbsp;pre-emphasis&nbsp;and&nbsp;equalization&nbsp;if&nbsp;losses&nbsp;are&nbsp;important.<br /><br />A.2&nbsp;Minimize&nbsp;Cross&nbsp;Talk<br />Strategy:&nbsp;Minimize&nbsp;mutual&nbsp;capacitance&nbsp;and&nbsp;mutual&nbsp;inductance&nbsp;between&nbsp;signal&nbsp;and&nbsp;return&nbsp;paths.<br /><br />Tactics:<br /><br />33.For&nbsp;microstrip&nbsp;or&nbsp;stripline&nbsp;transmission&nbsp;lines,&nbsp;keep&nbsp;the&nbsp;spacing&nbsp;between&nbsp;adjacent&nbsp;signal&nbsp;paths&nbsp;at&nbsp;least&nbsp;twice&nbsp;the&nbsp;line&nbsp;width.<br /><br />34.Minimize&nbsp;any&nbsp;discontinuities&nbsp;in&nbsp;the&nbsp;return&nbsp;path&nbsp;the&nbsp;signals&nbsp;might&nbsp;cross&nbsp;over.<br /><br />35.If&nbsp;you&nbsp;have&nbsp;to&nbsp;cross&nbsp;a&nbsp;gap&nbsp;in&nbsp;the&nbsp;return&nbsp;path,&nbsp;only&nbsp;use&nbsp;differential&nbsp;pairs.&nbsp;Never&nbsp;cross&nbsp;a&nbsp;gap&nbsp;with&nbsp;single-ended&nbsp;signals&nbsp;routed&nbsp;close&nbsp;together.<br /><br />36.For&nbsp;surface&nbsp;traces,&nbsp;keep&nbsp;the&nbsp;coupled&nbsp;lengths&nbsp;as&nbsp;short&nbsp;as&nbsp;possible&nbsp;and&nbsp;use&nbsp;as&nbsp;much&nbsp;solder&nbsp;mask&nbsp;as&nbsp;practical&nbsp;to&nbsp;minimize&nbsp;far-end&nbsp;cross&nbsp;talk.<br /><br />37.If&nbsp;far-end&nbsp;cross&nbsp;talk&nbsp;is&nbsp;a&nbsp;problem,&nbsp;add&nbsp;a&nbsp;laminate&nbsp;layer&nbsp;to&nbsp;the&nbsp;top&nbsp;of&nbsp;the&nbsp;surface&nbsp;traces&nbsp;to&nbsp;make&nbsp;them&nbsp;embedded&nbsp;microstrip.<br /><br />38.For&nbsp;long,&nbsp;coupled&nbsp;lengths&nbsp;where&nbsp;far-end&nbsp;cross&nbsp;talk&nbsp;may&nbsp;be&nbsp;a&nbsp;problem,&nbsp;route&nbsp;the&nbsp;traces&nbsp;in&nbsp;stripline.<br /><br />39.If&nbsp;you&nbsp;can't&nbsp;keep&nbsp;the&nbsp;coupling&nbsp;length&nbsp;less&nbsp;than&nbsp;the&nbsp;saturation&nbsp;length,&nbsp;changing&nbsp;the&nbsp;coupling&nbsp;length&nbsp;will&nbsp;have&nbsp;no&nbsp;impact&nbsp;on&nbsp;the&nbsp;near-end&nbsp;cross&nbsp;talk,&nbsp;so&nbsp;don't&nbsp;worry&nbsp;about&nbsp;decreasing&nbsp;coupling&nbsp;length.<br /><br />40.Use&nbsp;the&nbsp;lowest&nbsp;dielectric&nbsp;constant&nbsp;laminate&nbsp;you&nbsp;can&nbsp;afford&nbsp;so&nbsp;the&nbsp;dielectric&nbsp;spacing&nbsp;to&nbsp;the&nbsp;return&nbsp;planes&nbsp;can&nbsp;be&nbsp;kept&nbsp;to&nbsp;a&nbsp;minimum&nbsp;for&nbsp;the&nbsp;same&nbsp;target&nbsp;characteristic&nbsp;impedance.<br /><br />41.In&nbsp;a&nbsp;tightly&nbsp;coupled&nbsp;microstrip&nbsp;bus,&nbsp;the&nbsp;deterministic&nbsp;jitter&nbsp;can&nbsp;be&nbsp;reduced&nbsp;by&nbsp;keeping&nbsp;the&nbsp;spacing&nbsp;at&nbsp;least&nbsp;as&nbsp;wide&nbsp;as&nbsp;twice&nbsp;the&nbsp;line&nbsp;width&nbsp;or&nbsp;by&nbsp;routing&nbsp;timing-sensitive&nbsp;lines&nbsp;in&nbsp;stripline.<br /><br />42.For&nbsp;isolations&nbsp;in&nbsp;excess&nbsp;of&nbsp;–60&nbsp;dB,&nbsp;use&nbsp;stripline&nbsp;with&nbsp;guard&nbsp;traces.<br /><br />43.Always&nbsp;use&nbsp;a&nbsp;2D&nbsp;field&nbsp;solver&nbsp;to&nbsp;evaluate&nbsp;whether&nbsp;you&nbsp;need&nbsp;to&nbsp;use&nbsp;a&nbsp;guard&nbsp;trace.<br /><br />44.If&nbsp;you&nbsp;do&nbsp;use&nbsp;a&nbsp;guard&nbsp;trace,&nbsp;make&nbsp;it&nbsp;as&nbsp;wide&nbsp;as&nbsp;will&nbsp;fit&nbsp;and&nbsp;use&nbsp;vias&nbsp;to&nbsp;short&nbsp;the&nbsp;ends&nbsp;to&nbsp;the&nbsp;return&nbsp;path.&nbsp;Add&nbsp;additional&nbsp;shorting&nbsp;vias&nbsp;along&nbsp;the&nbsp;length&nbsp;if&nbsp;it&nbsp;is&nbsp;free&nbsp;and&nbsp;easy&nbsp;to&nbsp;do&nbsp;so.&nbsp;They&nbsp;are&nbsp;not&nbsp;as&nbsp;critical&nbsp;as&nbsp;the&nbsp;two&nbsp;on&nbsp;the&nbsp;ends.<br /><br />45.Minimize&nbsp;ground&nbsp;bounce&nbsp;by&nbsp;making&nbsp;the&nbsp;return&nbsp;paths&nbsp;in&nbsp;any&nbsp;packages&nbsp;or&nbsp;connectors&nbsp;as&nbsp;short&nbsp;and&nbsp;as&nbsp;wide&nbsp;as&nbsp;possible.<br /><br />46.Use&nbsp;chip-scale&nbsp;packages&nbsp;rather&nbsp;than&nbsp;larger&nbsp;packages.<br /><br />47.Minimize&nbsp;ground&nbsp;bounce&nbsp;in&nbsp;the&nbsp;power&nbsp;return&nbsp;path&nbsp;by&nbsp;bringing&nbsp;the&nbsp;power&nbsp;plane&nbsp;as&nbsp;close&nbsp;to&nbsp;the&nbsp;return&nbsp;plane&nbsp;as&nbsp;possible.<br /><br />48.Minimize&nbsp;ground&nbsp;bounce&nbsp;in&nbsp;the&nbsp;signal&nbsp;return&nbsp;paths&nbsp;by&nbsp;bringing&nbsp;the&nbsp;signal&nbsp;path&nbsp;as&nbsp;close&nbsp;to&nbsp;the&nbsp;return&nbsp;path&nbsp;as&nbsp;acceptable,&nbsp;consistent&nbsp;with&nbsp;matching&nbsp;the&nbsp;impedance&nbsp;of&nbsp;the&nbsp;system.<br /><br />49.Avoid&nbsp;using&nbsp;shared&nbsp;return&nbsp;paths&nbsp;in&nbsp;connectors&nbsp;and&nbsp;packages.<br /><br />50.When&nbsp;assigning&nbsp;leads&nbsp;in&nbsp;a&nbsp;package&nbsp;or&nbsp;connector,&nbsp;reserve&nbsp;the&nbsp;shortest&nbsp;leads&nbsp;for&nbsp;the&nbsp;ground&nbsp;paths&nbsp;and&nbsp;space&nbsp;the&nbsp;power&nbsp;and&nbsp;ground&nbsp;leads&nbsp;uniformly&nbsp;among&nbsp;the&nbsp;signal&nbsp;paths,&nbsp;or&nbsp;closest&nbsp;to&nbsp;those&nbsp;signal&nbsp;paths&nbsp;that&nbsp;will&nbsp;carry&nbsp;a&nbsp;lot&nbsp;of&nbsp;switching&nbsp;current.<br /><br />51.All&nbsp;no-connect&nbsp;leads&nbsp;or&nbsp;pins&nbsp;should&nbsp;be&nbsp;assigned&nbsp;as&nbsp;ground-return&nbsp;connections.<br /><br />52.Avoid&nbsp;using&nbsp;resistor&nbsp;single&nbsp;inline&nbsp;packages&nbsp;(SIPs)&nbsp;unless&nbsp;there&nbsp;are&nbsp;separate&nbsp;return&nbsp;paths&nbsp;for&nbsp;each&nbsp;resistor.<br /><br />53.Check&nbsp;the&nbsp;film&nbsp;to&nbsp;verify&nbsp;that&nbsp;antipads&nbsp;in&nbsp;via&nbsp;fields&nbsp;do&nbsp;not&nbsp;overlap&nbsp;and&nbsp;there&nbsp;is&nbsp;a&nbsp;well-defined&nbsp;web&nbsp;between&nbsp;clearance&nbsp;holes&nbsp;in&nbsp;the&nbsp;power&nbsp;and&nbsp;ground&nbsp;planes.<br /><br />54.If&nbsp;a&nbsp;signal&nbsp;changes&nbsp;reference&nbsp;planes,&nbsp;the&nbsp;reference&nbsp;planes&nbsp;should&nbsp;be&nbsp;as&nbsp;closely&nbsp;spaced&nbsp;as&nbsp;you&nbsp;can&nbsp;afford.&nbsp;If&nbsp;you&nbsp;use&nbsp;a&nbsp;decoupling&nbsp;capacitor&nbsp;to&nbsp;minimize&nbsp;the&nbsp;impedance&nbsp;of&nbsp;the&nbsp;return&nbsp;path,&nbsp;its&nbsp;capacitance&nbsp;value&nbsp;is&nbsp;immaterial.&nbsp;Select&nbsp;it&nbsp;and&nbsp;design&nbsp;it&nbsp;in&nbsp;for&nbsp;lowest&nbsp;loop&nbsp;inductance.<br /><br />55.If&nbsp;many&nbsp;signal&nbsp;lines&nbsp;switch&nbsp;reference&nbsp;planes,&nbsp;space&nbsp;the&nbsp;signal&nbsp;path&nbsp;vias&nbsp;as&nbsp;far&nbsp;apart&nbsp;as&nbsp;possible,&nbsp;rather&nbsp;than&nbsp;clustering&nbsp;them&nbsp;all&nbsp;in&nbsp;the&nbsp;same&nbsp;location.<br /><br />56.If&nbsp;a&nbsp;signal&nbsp;switches&nbsp;reference&nbsp;layers,&nbsp;and&nbsp;the&nbsp;planes&nbsp;are&nbsp;the&nbsp;same&nbsp;voltage&nbsp;level,&nbsp;place&nbsp;a&nbsp;via&nbsp;between&nbsp;the&nbsp;return&nbsp;planes&nbsp;as&nbsp;close&nbsp;to&nbsp;the&nbsp;signal&nbsp;via&nbsp;as&nbsp;possible.<br /><br />A.3&nbsp;Minimize&nbsp;Rail&nbsp;Collapse<br />Strategy:&nbsp;Minimize&nbsp;the&nbsp;impedance&nbsp;of&nbsp;the&nbsp;power-distribution&nbsp;network.<br /><br />Tactics:<br /><br />57.Minimize&nbsp;the&nbsp;loop&nbsp;inductance&nbsp;between&nbsp;the&nbsp;power&nbsp;and&nbsp;ground&nbsp;paths.<br /><br />58.Allocate&nbsp;power&nbsp;and&nbsp;ground&nbsp;planes&nbsp;on&nbsp;adjacent&nbsp;layers&nbsp;with&nbsp;as&nbsp;thin&nbsp;a&nbsp;dielectric&nbsp;as&nbsp;you&nbsp;can&nbsp;afford.<br /><br />59.Get&nbsp;the&nbsp;lowest&nbsp;impedance&nbsp;between&nbsp;the&nbsp;planes&nbsp;by&nbsp;using&nbsp;as&nbsp;high&nbsp;a&nbsp;dielectric&nbsp;constant&nbsp;between&nbsp;the&nbsp;planes&nbsp;as&nbsp;you&nbsp;can&nbsp;afford.<br /><br />60.Use&nbsp;as&nbsp;many&nbsp;power-&nbsp;and&nbsp;ground-plane&nbsp;pairs&nbsp;in&nbsp;parallel&nbsp;as&nbsp;you&nbsp;can&nbsp;afford.<br /><br />61.Route&nbsp;the&nbsp;same&nbsp;currents&nbsp;far&nbsp;apart&nbsp;and&nbsp;opposite&nbsp;currents&nbsp;close&nbsp;together.<br /><br />62.Place&nbsp;each&nbsp;power&nbsp;via&nbsp;as&nbsp;close&nbsp;as&nbsp;practical&nbsp;to&nbsp;a&nbsp;ground&nbsp;via.&nbsp;If&nbsp;you&nbsp;can't&nbsp;get&nbsp;them&nbsp;at&nbsp;least&nbsp;within&nbsp;a&nbsp;pitch&nbsp;equal&nbsp;to&nbsp;their&nbsp;length,&nbsp;there&nbsp;will&nbsp;be&nbsp;no&nbsp;coupling&nbsp;and&nbsp;no&nbsp;value&nbsp;in&nbsp;proximity.<br /><br />63.Route&nbsp;the&nbsp;power&nbsp;and&nbsp;ground&nbsp;planes&nbsp;as&nbsp;close&nbsp;as&nbsp;possible&nbsp;to&nbsp;the&nbsp;surface&nbsp;where&nbsp;the&nbsp;decoupling&nbsp;capacitors&nbsp;are&nbsp;mounted.<br /><br />64.Use&nbsp;multiple&nbsp;vias&nbsp;to&nbsp;the&nbsp;same&nbsp;power&nbsp;or&nbsp;ground&nbsp;pad,&nbsp;but&nbsp;keep&nbsp;the&nbsp;vias&nbsp;as&nbsp;far&nbsp;apart&nbsp;as&nbsp;possible.<br /><br />65.Use&nbsp;vias&nbsp;as&nbsp;large&nbsp;in&nbsp;diameter&nbsp;as&nbsp;practical&nbsp;when&nbsp;routing&nbsp;to&nbsp;power&nbsp;or&nbsp;ground&nbsp;planes.<br /><br />66.Use&nbsp;double-bonding&nbsp;on&nbsp;power&nbsp;and&nbsp;ground&nbsp;pads&nbsp;to&nbsp;minimize&nbsp;the&nbsp;loop&nbsp;inductance&nbsp;of&nbsp;the&nbsp;wire&nbsp;bonds.<br /><br />67.Use&nbsp;as&nbsp;many&nbsp;power&nbsp;and&nbsp;ground&nbsp;connections&nbsp;from&nbsp;the&nbsp;chip&nbsp;as&nbsp;you&nbsp;can&nbsp;afford.<br /><br />68.Use&nbsp;as&nbsp;many&nbsp;power&nbsp;and&nbsp;ground&nbsp;connections&nbsp;from&nbsp;the&nbsp;package&nbsp;as&nbsp;you&nbsp;can&nbsp;afford.<br /><br />69.Use&nbsp;chip-interconnect&nbsp;methods&nbsp;that&nbsp;are&nbsp;as&nbsp;short&nbsp;as&nbsp;possible,&nbsp;such&nbsp;as&nbsp;flip-chip&nbsp;rather&nbsp;than&nbsp;wire-bond.<br /><br />70.Use&nbsp;package&nbsp;leads&nbsp;as&nbsp;short&nbsp;as&nbsp;possible,&nbsp;such&nbsp;as&nbsp;chip-scale&nbsp;packages&nbsp;rather&nbsp;than&nbsp;QFP&nbsp;packages.<br /><br />71.Keep&nbsp;all&nbsp;surface&nbsp;traces&nbsp;that&nbsp;run&nbsp;between&nbsp;the&nbsp;pads&nbsp;of&nbsp;the&nbsp;decoupling&nbsp;capacitors&nbsp;and&nbsp;their&nbsp;vias&nbsp;as&nbsp;short&nbsp;and&nbsp;wide&nbsp;as&nbsp;possible.<br /><br />72.Use&nbsp;a&nbsp;total&nbsp;amount&nbsp;of&nbsp;bulk-decoupling&nbsp;capacitance&nbsp;to&nbsp;take&nbsp;over&nbsp;from&nbsp;the&nbsp;regulator&nbsp;at&nbsp;low&nbsp;frequency.<br /><br />73.Use&nbsp;a&nbsp;total&nbsp;number&nbsp;of&nbsp;decoupling&nbsp;capacitors&nbsp;to&nbsp;reduce&nbsp;the&nbsp;equivalent&nbsp;inductance&nbsp;at&nbsp;high&nbsp;frequency.<br /><br />74.Use&nbsp;as&nbsp;small&nbsp;a&nbsp;body&nbsp;size&nbsp;for&nbsp;a&nbsp;decoupling&nbsp;capacitor&nbsp;as&nbsp;you&nbsp;can&nbsp;afford&nbsp;and&nbsp;minimize&nbsp;the&nbsp;length&nbsp;of&nbsp;all&nbsp;connections&nbsp;from&nbsp;the&nbsp;capacitor&nbsp;pads&nbsp;to&nbsp;the&nbsp;power&nbsp;and&nbsp;ground&nbsp;planes.<br /><br />75.Place&nbsp;as&nbsp;much&nbsp;decoupling&nbsp;capacitance&nbsp;as&nbsp;you&nbsp;can&nbsp;afford&nbsp;on&nbsp;the&nbsp;chip&nbsp;itself.<br /><br />76.Place&nbsp;as&nbsp;many&nbsp;low-inductance&nbsp;decoupling&nbsp;capacitors&nbsp;as&nbsp;you&nbsp;can&nbsp;afford&nbsp;on&nbsp;the&nbsp;package.<br /><br />77.Use&nbsp;differential&nbsp;pairs&nbsp;for&nbsp;I/Os.<br /><br />A.4&nbsp;Minimize&nbsp;EMI<br />Strategy:&nbsp;Reduce&nbsp;the&nbsp;voltage&nbsp;that&nbsp;drives&nbsp;common&nbsp;currents,&nbsp;increase&nbsp;the&nbsp;impedance&nbsp;of&nbsp;the&nbsp;common&nbsp;current&nbsp;paths,&nbsp;and&nbsp;shield&nbsp;and&nbsp;filter&nbsp;as&nbsp;a&nbsp;quick&nbsp;fix.<br /><br />Tactics:<br /><br />78.Reduce&nbsp;ground&nbsp;bounce.<br /><br />79.Keep&nbsp;all&nbsp;traces&nbsp;at&nbsp;least&nbsp;five&nbsp;line&nbsp;widths&nbsp;from&nbsp;the&nbsp;edge&nbsp;of&nbsp;the&nbsp;board.<br /><br />80.Route&nbsp;traces&nbsp;in&nbsp;stripline&nbsp;when&nbsp;possible.<br /><br />81.Place&nbsp;the&nbsp;highest-speed/highest-current&nbsp;components&nbsp;as&nbsp;far&nbsp;from&nbsp;the&nbsp;I/O&nbsp;connections&nbsp;as&nbsp;possible.<br /><br />82.Place&nbsp;the&nbsp;decoupling&nbsp;capacitors&nbsp;in&nbsp;proximity&nbsp;to&nbsp;the&nbsp;chips&nbsp;to&nbsp;minimize&nbsp;the&nbsp;spread&nbsp;of&nbsp;high-frequency-current&nbsp;components&nbsp;in&nbsp;the&nbsp;planes.<br /><br />83.Keep&nbsp;power&nbsp;and&nbsp;ground&nbsp;planes&nbsp;on&nbsp;adjacent&nbsp;layers&nbsp;and&nbsp;as&nbsp;close&nbsp;together&nbsp;as&nbsp;possible.<br /><br />84.Use&nbsp;as&nbsp;many&nbsp;power-&nbsp;and&nbsp;ground-plane&nbsp;pairs&nbsp;as&nbsp;you&nbsp;can&nbsp;afford.<br /><br />85.When&nbsp;using&nbsp;multiple&nbsp;power-&nbsp;and&nbsp;ground-plane&nbsp;pairs,&nbsp;recess&nbsp;the&nbsp;power&nbsp;planes&nbsp;and&nbsp;then&nbsp;stitch&nbsp;shorting&nbsp;vias&nbsp;between&nbsp;the&nbsp;ground&nbsp;planes&nbsp;along&nbsp;the&nbsp;edges.<br /><br />86.Use&nbsp;ground&nbsp;planes&nbsp;as&nbsp;surface&nbsp;layers,&nbsp;where&nbsp;possible.<br /><br />87.Know&nbsp;the&nbsp;resonant&nbsp;frequency&nbsp;of&nbsp;all&nbsp;packages&nbsp;and&nbsp;change&nbsp;the&nbsp;package&nbsp;geometry&nbsp;if&nbsp;there&nbsp;is&nbsp;an&nbsp;overlap&nbsp;with&nbsp;a&nbsp;clock&nbsp;harmonic.<br /><br />88.Avoid&nbsp;signals&nbsp;switching&nbsp;different&nbsp;voltage&nbsp;reference&nbsp;planes&nbsp;in&nbsp;a&nbsp;package.&nbsp;This&nbsp;will&nbsp;drive&nbsp;package&nbsp;resonances.<br /><br />89.Add&nbsp;ferrite&nbsp;filter&nbsp;sheets&nbsp;to&nbsp;the&nbsp;top&nbsp;of&nbsp;packages&nbsp;if&nbsp;they&nbsp;might&nbsp;have&nbsp;a&nbsp;resonance.<br /><br />90.Minimize&nbsp;any&nbsp;asymmetries&nbsp;between&nbsp;the&nbsp;lines&nbsp;in&nbsp;each&nbsp;differential&nbsp;pair<br /><br />91.Use&nbsp;a&nbsp;common-signal-choke&nbsp;filter&nbsp;on&nbsp;all&nbsp;differential&nbsp;pair&nbsp;connections<br /><br />92.Use&nbsp;a&nbsp;common-signal-choke&nbsp;filter&nbsp;around&nbsp;the&nbsp;outside&nbsp;of&nbsp;all&nbsp;peripheral&nbsp;cables.<br /><br />93.Filter&nbsp;all&nbsp;external&nbsp;I/O&nbsp;lines&nbsp;to&nbsp;use&nbsp;the&nbsp;longest&nbsp;signal&nbsp;rise&nbsp;time&nbsp;that&nbsp;is&nbsp;tolerable&nbsp;for&nbsp;the&nbsp;timing&nbsp;budget.<br /><br />94.Use&nbsp;spread-spectrum&nbsp;clock&nbsp;generator&nbsp;to&nbsp;spread&nbsp;the&nbsp;first&nbsp;harmonic&nbsp;over&nbsp;a&nbsp;wider&nbsp;frequency&nbsp;range&nbsp;and&nbsp;decrease&nbsp;the&nbsp;radiated&nbsp;energy&nbsp;within&nbsp;the&nbsp;bandwidth&nbsp;of&nbsp;the&nbsp;FCC&nbsp;test.<br /><br />95.When&nbsp;connecting&nbsp;shielded&nbsp;cables,&nbsp;try&nbsp;to&nbsp;keep&nbsp;the&nbsp;shield&nbsp;as&nbsp;an&nbsp;extension&nbsp;of&nbsp;the&nbsp;enclosure.<br /><br />96.Minimize&nbsp;the&nbsp;inductance&nbsp;of&nbsp;the&nbsp;shielded&nbsp;cable&nbsp;connections&nbsp;to&nbsp;the&nbsp;enclosure.&nbsp;Use&nbsp;a&nbsp;coaxial&nbsp;connection&nbsp;right&nbsp;from&nbsp;the&nbsp;end&nbsp;of&nbsp;the&nbsp;cable&nbsp;and&nbsp;to&nbsp;the&nbsp;enclosure.<br /><br />97.Equipment&nbsp;bays&nbsp;should&nbsp;not&nbsp;penetrate&nbsp;the&nbsp;integrity&nbsp;of&nbsp;the&nbsp;enclosure.<br /><br />98.Only&nbsp;interconnects&nbsp;need&nbsp;to&nbsp;break&nbsp;the&nbsp;enclosure&nbsp;integrity.<br /><br />99.Keep&nbsp;aperture&nbsp;diameters&nbsp;small,&nbsp;significantly&nbsp;smaller&nbsp;than&nbsp;a&nbsp;wavelength&nbsp;of&nbsp;the&nbsp;lowest&nbsp;frequency&nbsp;radiation&nbsp;that&nbsp;might&nbsp;leak.&nbsp;More&nbsp;and&nbsp;smaller&nbsp;holes&nbsp;are&nbsp;better&nbsp;than&nbsp;fewer&nbsp;and&nbsp;larger&nbsp;holes.<br /><br />100.The&nbsp;most&nbsp;expensive&nbsp;rule&nbsp;is&nbsp;the&nbsp;one&nbsp;that&nbsp;delays&nbsp;the&nbsp;product&nbsp;ship&nbsp;date.<br />
您需要登录后才可以回帖 登录 | 注册

本版积分规则

19

主题

349

帖子

3

粉丝
快速回复 在线客服 返回列表 返回顶部