由于ESD 器件依赖电压的非线性输入电容连接到模拟电路输入管脚,往往会导致电路不能正常工作,因此,对于模拟电路的ESD 保护电路设计,除了要能满足芯片所要求的人体模型下的耐压要求,所遇到的最大的挑战是使管脚的输入电容(包括ESD 保护器件以及压焊盘上的电容之和) 尽可能小并且保持恒定。 而文中提出的ESD 保护电路在0. 25μm 的CMOS 工艺中,可以承受HBM 下的2. 5 kV 的ESD 电压, 并且输入电容只有0. 6 p F。为了减小管脚上的输入电容,M8 和M9 的尺寸不能太大,虽然ESD 电流泻放的主要器件M0 和M1 的尺寸很大,结电容也很大,但是该电容并没有连到压焊盘上,所以该电路可以承受较高的ESD 电压,同时输入电容又比较小。 该ESD 保护电路的输入电容Cin = CPAD + Cn +Cp ,其中, CPAD 为PAD 上电容,NMOS 和PMOS 上漏极电容为Cn和Cp 。 PAD 上电容相对固定,可以通过一些优化来减小。 漏极电容主要有两部分组成:漏极和栅极之间的电容、漏极的结电容。 在版图不变的情况下,漏栅电容大小基本不变,但漏极结电容会随着漏极电压的变化而出现较大变化。 当输入信号的电压幅值增大时,NMOS 的漏极结电容会变小,而PMOS 的漏极结电容却会增大。 因此,在信号电压幅值变化的时候, PMOS 和NMOS 的漏极结电容可以形成互补,总的寄生电容相对稳定。 文中提出的电路在保证合适的耐压要求前提下,输入电容较小并且能保持相对恒定,所以比较适合应用于高速模拟电路。 对于每一个输入或输出管脚来讲,按照对地或对电源放电的不同,可以分为4 种放电模式[3 ] :正电荷对地( Positive to Uss , PS) 、负电荷对地(Negative to Uss , NS) 、正电荷对电源( Positive toUdd , PD) 以及负电荷对电源( Negative to Udd ,ND) 。 因此在设计ESD 保护电路是需要考虑上述4种不同的放电模式。 以下分析该电路的基本工作原理,由于同一个MOS 管在不同的ESD 电压极性下的耐压值也大不相同,NMOS 管在NS 模式下的耐压值一般高出PS模式下10 倍以上,而PMOS 管在PD 模式下的耐压值高出ND 模式下10 倍以上,而一块芯片的耐压能力是由其所有管脚在所有模式下的最低耐压值所决定的,故要分析4 种放电模式下的电路工作原理,尤其是注意PS 和ND 模式下的放电途径。 该保护电路在NS 模式下通过M9 释放ESD 电流,在PD 模式下通过M8 释放,均能达到较高的耐压值(见表1) 。 当放电模式是PS 模式时,利用电源间的保护电路来形成一条新的放电路径,电流通过ggPMOS(M8 ) 正向偏置的寄生二极管流向Udd ,Udd和GND 之间的电压升高,M6 和M3 构成的RC 检测电路,触发大尺寸的MOS 管(M2 , M0 ) 迅速导通,在Udd 和GND 之间形成通路, 有效放电。 由于ggPMOS 的寄生二极管处于正向偏置,Udd 和GND之间泻流管尺寸很大,所以电路可以承受很大的电压。 在ND 模式下原理类似,即通过ggNMOS ( M9)正向偏置的寄生二极管,以及中间的钳位电路泻放ESD 电流。 图4 是上述Udd到Uss片上保护电路原理的示意图。 Spice 仿真以及ESD 测试结果 由于ESD 保护电路以及封装所带来的寄生电容和寄生电感对原有输出信号会有影响,尤其是在高速模拟电路中,频率越高信号畸变越严重,所以建立合适的仿真模型并进行有效的仿真是必须的。信号一般经过驱动, ESD 保护,和封装引线才能传到芯片外的负载上,封装的模型根据选用的封装形式和厂家提供的参数决定。 一般IC 封装会给出端口的寄生电容,电阻和电感,其等效模型如图5所示。 将该模型与前面的ESD 保护电路(图3) 串连起来就可以得到端口模型, 可用spice 对用于USB2.0 的环境,在480 MHz 频率下的收发电路进行仿真,其仿真波形如图6 所示。 输出端口out1 是不考虑端口模型的影响,480 MHz 时钟的输出较为理想,out2 是加入端口模型后的时钟输出,波形有所畸变,但仍能满足电路设计要求。
|