IGBT 的转移特性是指输出漏极电流 Id与栅源电压 Ugs之间的关系曲线。它与 MOSFET的转移特性 相同,当栅源电压小于开启电压 Ugs(th) 时,IGBT 处于关断状态。在 IGBT 导通后的大部分漏极电流 范围内,Id与 Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为 15V 左右。
IGBT 的开关特性是指漏极电流与漏源电压之间的关系。IGBT 处于导通态时,由于它的 PNP晶体 管为宽基区晶体管,所以其 B值极低。尽管等效电路为达林顿结构,但流过 MOSFET 的电流成为 IGBT 总电流的主要部分。此时,通态电压 Uds(on) 可用下式表示
Uds(on) = Uj1 + Udr + IdRoh
式中 Uj1 —— JI 结的正向电压,其值为 0.7 ~ IV ;
Udr ——扩展电阻 Rdr 上的压降;
Roh ——沟道电阻。 通态电流 Ids 可用下式表示:
Ids=(1+Bpnp)Imos
式中 Imos ——流过 MOSFET 的电流。
由于 N+区存在电导调制效应,所以 IGBT 的通态压降小,耐压 1000V 的 IGBT 通态压降为 2~3V 。 IGBT 处于断态时,只有很小的泄漏电流存在。 2 .动态特性 IGBT 在开通过程中,大部分时间是作为 MOSFET 来运行的,只是在漏源电压 Uds
下降过程后期, PNP晶体管由放大区至饱和,又增加了一段延迟时间。td(on)为开通延迟时间,tri 为电流上升时间。实际应用中常给出的漏极电流开通时间 ton 即为 td(on)tri 之和。漏源电压的下降时间由tfe1 和 tfe2 组成,如图 2 - 58 所示
IGBT在关断过程中,漏极电流的波形变为两段。因为 MOSFET 关断后,PNP晶体管的存储电荷难以迅速消除,造成漏极电流较长的尾部时间, td(off)为关断延迟时间, trv为电压 Uds(f)的上升时间。实际应用中常常给出的漏极电流的下降时间 Tf由图 2 - 59 中的 t(f1)和 t(f2)两段组成,而漏极电流的关断时间
t(off)=td(off)+trv 十 t(f) ( 2 - 16 )
式中, td(off) 与 trv 之和又称为存储时间。
|