基于电子设备的处理器系统设计人员经常会在为他们的应用选择最佳电源架构时遇到困难。有时最佳的解决方案是插入式电源。而有时采用由分立的元件组成的电源才是最佳的解决方案。选择插入式电源解决方案相对来说比较直接,但对于缺乏电源设计经验的数字设计人员来说,设计一个分立电源解决方案可能会使他望而却步。大多 DC/DC 电源控制 IC 供应商均可提供详细的辅助材料来帮助电路设计。但是,在开始电源设计之前,设计人员必须选择正确的拓扑。本文将提供以下指导原则来帮助为某些用于微控制器、数字信号处理器(DSP)及基于 FPGA 的电子产品的最常用结构选择正确的电源拓扑。 线性调节器/控制器
线性调节器是最简单的转换器。线性调节器只是把高输入电压降低为低输出电压,其输入电流等于输出电流。线性调节器由误差放大器、参考电压及路径元件组成。它可以进行完全集成,也可以由控制 IC与外部路径元件构成。路径元件可以是双极晶体管或 MOSFET。线性调节器的优点在于其简易性与相对无噪声/波纹的输出电压。线性调节器需要的唯一无源辅助元件是输入与输出电容器。其主要缺点是,对于输入/输出压差较大的应用来说,效率极低。功率是以散热的形式损耗的,因此,如果应用具有较大输出电流的话,调节器封装的功耗要求会很高。由于可以选择路径元件来提供更高的电流及适当的散热量,因此在高电流电平时,采用外部路径元件的线性调节器只有少许优势。 线性调节器的另一个限制是它要求具备最低输入-输出压差或压降,以便保持调节。即使在高电流电平时,许多采用内部路径元件的最新调节器仍然具有极低的压降,因此能够以极低的输入电压运行。例如,采用 1.5V 固定输出电压的德州仪器 (TI) TPS72515 就可在仅 1.8V 下以 750mA 输出电流运行,因此可达到83%的效率。 无感应器的 DC/DC 转换器
开关调节器在分立的包中把能量从输入移动到输出。感应器或电容器可作为能量存储单元将能量从电源电路的输入移动到输出。与只能降低电压的线性调节器不同,这些转换器可以升高、降低或转换输入电压。另外,能量存储单元可实现不相等的输入/输出电流。例如,开关调节器可将 5V 的低电流电源降低为 3.3V 的高电流电源,或者把 3.3V 的高电流电源升高为 5V 的低电流电源。因此,这些转换器可以达到比线性调节器高得多的效率。 最简单的开关调节器是“无感应器”开关 DC/DC 转换器,有时候又称为充电泵。充电泵采用多个开关及电容器把电荷通过一个或多个"飞速"电容器从输入电源移动到输出电容器。这种转换器的主要优点在于设计简单并具有高效性。图1显示了 TPS60130 300mA、无感应器开关电容器的效率曲线。 图1:无感应器开关转换器效率曲线示例 为了在大输入-输出电压范围内实现更高的效率,转换器可以在乘法模式(如:1.5X、2X 等)之间切换。乘法模式的改变会造成图1效率曲线中步进的改变。如果没有反馈调节的话,这种转换器只能以成倍的输入电压提供输出电压。因此,存在不同的反馈调节方法来提供不同的输出电压。每种反馈方法都会不同地影响转换器的效率与波纹,因此应根据应用的需要进行选择。
|