STM32中定时器的时钟源
STM32中有多达8个定时器,其中TIM1和TIM8是能够产生三对PWM互补输出的高级定时器,常用于三相电机的驱动,它们的时钟由APB2的输出产生。其它6个为普通定时器,时钟由APB1的输出产生。
下图是STM32参考手册上时钟分配图中,有关定时器时钟部分的截图:
从图中可以看出,定时器的时钟不是直接来自APB1或APB2,而是来自于输入为APB1或APB2的一个倍频器,图中的蓝色部分。
下面以定时器2~7的时钟说明这个倍频器的作用:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其它数值(即预分频系数为2、4、8或16)时,这个倍频器起作用,定时器的时钟频率等于APB1的频率两倍。
假定AHB=36MHz,因为APB1允许的最大频率为36MHz,所以APB1的预分频系数可以取任意数值;当预分频系数=1时,APB1=36MHz,TIM2~7的时钟频率=36MHz(倍频器不起作用);当预分频系数=2时,APB1=18MHz,在倍频器的作用下,TIM2~7的时钟频率=36MHz。
有人会问,既然需要TIM2~7的时钟频率=36MHz,为什么不直接取APB1的预分频系数=1?答案是:APB1不但要为TIM2~7提供时钟,而且还要为其它外设提供时钟;设置这个倍频器可以在保证其它外设使用较低时钟频率时,TIM2~7仍能得到较高的时钟频率。
再举个例子:当AHB=72MHz时,APB1的预分频系数必须大于2,因为APB1的最大频率只能为36MHz。如果APB1的预分频系数=2,则因为这个倍频器,TIM2~7仍然能够得到72MHz的时钟频率。能够使用更高的时钟频率,无疑提高了定时器的分辨率,这也正是设计这个倍频器的初衷。
STM32笔记之外部中断GPIO
STM32资料 2009-07-14 13:35 阅读331 评论0
字号: 大大 中中 小小
b) 初始化函数定义:
void EXTI_Configuration(void); //定义IO中断初始化函数
c) 初始化函数调用:
EXTI_Configuration();//IO中断初始化函数调用简单应用:
d) 初始化函数:
void EXTI_Configuration(void)
{
EXTI_InitTypeDef EXTI_InitStructure; //EXTI初始化结构定义
EXTI_ClearITPendingBit(EXTI_LINE_KEY_BUTTON);//清除中断标志
GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource3);//管脚选择
GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource4);
GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource5);
GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource6);
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;//事件选择
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;//触发模式
EXTI_InitStructure.EXTI_Line = EXTI_Line3 | EXTI_Line4; //线路选择
EXTI_InitStructure.EXTI_LineCmd = ENABLE;//启动中断
EXTI_Init(&EXTI_InitStructure);//初始化
}
e) RCC初始化函数中开启I/O时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA , ENABLE);
GPIO初始化函数中定义输入I/O管脚。
//IO输入,GPIOA的4脚输入
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入
GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化
f) 在NVIC的初始化函数里面增加以下代码打开相关中断:
NVIC_InitStructure.NVIC_IRQChannel = EXTI9_5_IRQChannel; //通道
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;//占先级
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应级
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //启动
NVIC_Init(&NVIC_InitStructure); //初始化
g) 在stm32f10x_it.c文件中找到void USART1_IRQHandler函数,在其中添入执行代码。一般最少三个步骤:先使用if语句判断是发生那个中断,然后清除中断标志位,最后给字符串赋值,或做其他事情。
if(EXTI_GetITStatus(EXTI_Line3) != RESET) //判断中断发生来源
{ EXTI_ClearITPendingBit(EXTI_Line3); //清除中断标志
USART_SendData(USART1, 0x41); //发送字符“a”
GPIO_WriteBit(GPIOB, GPIO_Pin_2, (BitAction)(1-GPIO_ReadOutputDataBit(GPIOB, GPIO_Pin_2)));//LED发生明暗交替
}
h) 中断注意事项:
中断发生后必须清除中断位,否则会出现死循环不断发生这个中断。然后需要对中断类型进行判断再执行代码。
使用EXTI的I/O中断,在完成RCC与GPIO硬件设置之后需要做三件事:初始化EXTI、NVIC开中断、编写中断执行代码。
STM32的USART
STM32资料 2009-07-14 13:33 阅读489 评论4
字号: 大大 中中 小小
b) 初始化函数定义:
void USART_Configuration(void); //定义串口初始化函数
c) 初始化函数调用:
void UART_Configuration(void); //串口初始化函数调用
初始化代码:
void USART_Configuration(void) //串口初始化函数
{
//串口参数初始化
USART_InitTypeDef USART_InitStructure; //串口设置恢复默认参数
//初始化参数设置
USART_InitStructure.USART_BaudRate = 9600; //波特率9600
USART_InitStructure.USART_WordLength = USART_WordLength_8b; //字长8位
USART_InitStructure.USART_StopBits = USART_StopBits_1; //1位停止字节
USART_InitStructure.USART_Parity = USART_Parity_No; //无奇偶校验
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;//打开Rx接收和Tx发送功能
USART_Init(USART1, &USART_InitStructure); //初始化
USART_Cmd(USART1, ENABLE); //启动串口
}
RCC中打开相应串口
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 , ENABLE);
GPIO里面设定相应串口管脚模式
//串口1的管脚初始化
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //管脚9
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出
GPIO_Init(GPIOA, &GPIO_InitStructure); //TX初始化
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //管脚10
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入
GPIO_Init(GPIOA, &GPIO_InitStructure); //RX初始化
d) 简单应用:
发送一位字符
USART_SendData(USART1, 数据); //发送一位数据
while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET){} //等待发送完毕
接收一位字符
while(USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET){} //等待接收完毕
变量= (USART_ReceiveData(USART1)); //接受一个字节
发送一个字符串
先定义字符串:char rx_data[250];
然后在需要发送的地方添加如下代码
int i; //定义循环变量
while(rx_data!='\0') //循环逐字输出,到结束字'\0'
{USART_SendData(USART1, rx_data); //发送字符
while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET){} //等待字符发送完毕
i++;}
e) USART注意事项:
发动和接受都需要配合标志等待。
只能对一个字节操作,对字符串等大量数据操作需要写函数
使用串口所需设置:RCC初始化里面打开RCC_APB2PeriphClockCmd
(RCC_APB2Periph_USARTx);GPIO里面管脚设定:串口RX(50Hz,IN_FLOATING);串口TX(50Hz,AF_PP);
f) printf函数重定义(不必理解,调试通过以备后用)
(1) 需要c标准函数:
#include "stdio.h"
(2) 粘贴函数定义代码
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch) //定义为putchar应用
(3) RCC中打开相应串口
(4) GPIO里面设定相应串口管脚模式
(6) 增加为putchar函数。
int putchar(int c) //putchar函数
{
if (c == '\n'){putchar('\r');} //将printf的\n变成\r
USART_SendData(USART1, c); //发送字符
while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET){} //等待发送结束
return c; //返回值
}
(8) 通过,试验成功。printf使用变量输出:%c字符,%d整数,%f浮点数,%s字符串,/n或/r为换行。注意:只能用于main.c中。
3、 NVIC串口中断的应用
a) 目的:利用前面调通的硬件基础,和几个函数的代码,进行串口的中断输入练习。因为在实际应用中,不使用中断进行的输入是效率非常低的,这种用法很少见,大部分串口的输入都离不开中断。
b) 初始化函数定义及函数调用:不用添加和调用初始化函数,在指定调试地址的时候已经调用过,在那个NVIC_Configuration里面添加相应开中断代码就行了。
c) 过程:
i. 在串口初始化中USART_Cmd之前加入中断设置:
USART_ITConfig(USART1, USART_IT_TXE, ENABLE);//TXE发送中断,TC传输完成中断,RXNE接收中断,PE奇偶错误中断,可以是多个。
ii. RCC、GPIO里面打开串口相应的基本时钟、管脚设置
iii. NVIC里面加入串口中断打开代码:
NVIC_InitTypeDef NVIC_InitStructure;//中断默认参数
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQChannel;//通道设置为串口1中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //中断占先等级0
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //中断响应优先级0
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //打开中断
NVIC_Init(&NVIC_InitStructure); //初始化
iv. 在stm32f10x_it.c文件中找到void USART1_IRQHandler函数,在其中添入执行代码。一般最少三个步骤:先使用if语句判断是发生那个中断,然后清除中断标志位,最后给字符串赋值,或做其他事情。
void USART1_IRQHandler(void) //串口1中断
{
char RX_dat; //定义字符变量
if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //判断发生接收中断
{USART_ClearITPendingBit(USART1, USART_IT_RXNE); //清除中断标志
GPIO_WriteBit(GPIOB, GPIO_Pin_10, (BitAction)0x01); //开始传输
RX_dat=USART_ReceiveData(USART1) & 0x7F; //接收数据,整理除去前两位
USART_SendData(USART1, RX_dat); //发送数据
while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET){}//等待发送结束
}
}
d) 中断注意事项:
可以随时在程序中使用USART_ITConfig(USART1, USART_IT_TXE, DISABLE);来关闭中断响应。
NVIC_InitTypeDef NVIC_InitStructure定义一定要加在NVIC初始化模块的第一句。
全局变量与函数的定义:在任意.c文件中定义的变量或函数,在其它.c文件中使用extern+定义代码再次定义就可以直接调用了。
STM32运行的必要硬件库
STM32资料 2009-07-14 13:31 阅读163 评论0
字号: 大大 中中 小小
0、 实验之前的准备
a) 接通串口转接器
b) 下载IO与串口的原厂程序,编译通过保证调试所需硬件正常。
1、 flash,lib,nvic,rcc和GPIO,基础程序库编写
a) 这几个库函数中有一些函数是关于芯片的初始化的,每个程序中必用。为保障程序品质,初学阶段要求严格遵守官方习惯。注意,官方程序库例程中有个platform_config.h文件,是专门用来指定同类外设中第几号外设被使用,就是说在main.c里面所有外设序号用x代替,比如USARTx,程序会到这个头文件中去查找到底是用那些外设,初学的时候参考例程别被这个所迷惑住。
b) 全部必用代码取自库函数所带例程,并增加逐句注释。
c) 习惯顺序——Lib(debug),RCC(包括Flash优化),NVIC,GPIO
d) 必用模块初始化函数的定义:
void RCC_Configuration(void); //定义时钟初始化函数
void GPIO_Configuration(void); //定义管脚初始化函数
void NVIC_Configuration(void); //定义中断管理初始化函数
void Delay(vu32 nCount); //定义延迟函数
e) Main中的初始化函数调用:
RCC_Configuration(); //时钟初始化函数调用
NVIC_Configuration(); //中断初始化函数调用
GPIO_Configuration(); //管脚初始化函数调用
f) Lib注意事项:
属于Lib的Debug函数的调用,应该放在main函数最开始,不要改变其位置。
g) RCC注意事项:
Flash优化处理可以不做,但是两句也不难也不用改参数……
根据需要开启设备时钟可以节省电能
时钟频率需要根据实际情况设置参数
h) NVIC注意事项
注意理解占先优先级和响应优先级的分组的概念
i) GPIO注意事项
注意以后的过程中收集不同管脚应用对应的频率和模式的设置。
作为高低电平的I/O,所需设置:RCC初始化里面打开RCC_APB2
PeriphClockCmd(RCC_APB2Periph_GPIOA);GPIO里面管脚设定:IO输出(50MHz,Out_PP);IO输入(50MHz,IPU);
j) GPIO应用
GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_RESET);//重置
GPIO_WriteBit(GPIOB, GPIO_Pin_2, (BitAction)0x01);//写入1
GPIO_WriteBit(GPIOB, GPIO_Pin_2, (BitAction)0x00);//写入0
GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_6) ;//读入IO
k) 简单Delay函数
void Delay(vu32 nCount)//简单延时函数
{for(; nCount != 0; nCount--);}
基于STM32的PWM输出
STM32资料 2009-07-14 13:30 阅读449 评论2
字号: 大大 中中 小小
c) 初始化函数定义:
void TIM_Configuration(void); //定义TIM初始化函数
d) 初始化函数调用:
TIM_Configuration(); //TIM初始化函数调用
e) 初始化函数,不同于前面模块,TIM的初始化分为两部分——基本初始化和通道初始化:
void TIM_Configuration(void)//TIM初始化函数
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;//定时器初始化结构
TIM_OCInitTypeDef TIM_OCInitStructure;//通道输出初始化结构
//TIM3初始化
TIM_TimeBaseStructure.TIM_Period = 0xFFFF; //周期0~FFFF
TIM_TimeBaseStructure.TIM_Prescaler = 5; //时钟分频
TIM_TimeBaseStructure.TIM_ClockDivision = 0; //时钟分割
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;//模式
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //基本初始化
TIM_ITConfig(TIM3, TIM_IT_CC4, ENABLE);//打开中断,中断需要这行代码
//TIM3通道初始化
TIM_OCStructInit(& TIM_OCInitStructure); //默认参数
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //工作状态
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //设定为输出,需要PWM输出才需要这行代码
TIM_OCInitStructure.TIM_Pulse = 0x2000; //占空长度
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //高电平
TIM_OC4Init(TIM3, &TIM_OCInitStructure); //通道初始化
TIM_Cmd(TIM3, ENABLE); //启动TIM3
}
f) RCC初始化函数中加入TIM时钟开启:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM3, ENABLE);
g) GPIO里面将输入和输出管脚模式进行设置。信号:AF_PP,50MHz。
h) 使用中断的话在NVIC里添加如下代码:
//打开TIM2中断
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQChannel; //通道
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3;//占先级
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //响应级
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //启动
NVIC_Init(&NVIC_InitStructure); //初始化
中断代码:
void TIM2_IRQHandler(void)
{
if (TIM_GetITStatus(TIM2, TIM_IT_CC4) != RESET) //判断中断来源
{
TIM_ClearITPendingBit(TIM2, TIM_IT_CC4); //清除中断标志
GPIO_WriteBit(GPIOB, GPIO_Pin_11, (BitAction)(1-GPIO_ReadOutputDataBit(GPIOB, GPIO_Pin_11)));//变换LED色彩
IC4value = TIM_GetCapture4(TIM2); //获取捕捉数值
}
}
i) 简单应用:
//改变占空比
TIM_SetCompare4(TIM3, 变量);
j) 注意事项:
管脚的IO输出模式是根据应用来定,比如如果用PWM输出驱动LED则应该将相应管脚设为AF_PP,否则单片机没有输出。
STM32资料一(转载)
STM32资料 2009-06-14 20:15 阅读766 评论1
字号: 大大 中中 小小
注:下面是一些常用的代码,网上很多但是大多注释不全。高手看没问题,对于我们这些新手就费劲了……所以我把这些代码集中,进行了逐句注释,希望对新手们有价值。
阅读flash: 芯片内部存储器flash操作函数
我的理解——对芯片内部flash进行操作的函数,包括读取,状态,擦除,写入等等,可以允许程序去操作flash上的数据。
基础应用1,FLASH时序延迟几个周期,等待总线同步操作。推荐按照单片机系统运行频率,0—24MHz时,取Latency=0;24—48MHz时,取Latency=1;48~72MHz时,取Latency=2。所有程序中必须的
用法:FLASH_SetLatency(FLASH_Latency_2);
位置:RCC初始化子函数里面,时钟起振之后。
基础应用2,开启FLASH预读缓冲功能,加速FLASH的读取。所有程序中必须的
用法:FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
位置:RCC初始化子函数里面,时钟起振之后。
3、 阅读lib:调试所有外设初始化的函数。
我的理解——不理解,也不需要理解。只要知道所有外设在调试的时候,EWRAM需要从这个函数里面获得调试所需信息的地址或者指针之类的信息。
基础应用1,只有一个函数debug。所有程序中必须的。
用法: #ifdef DEBUG
debug();
#endif
位置:main函数开头,声明变量之后。
|