打印
[技术]

开关电源的电磁干扰防制技术——传导篇

[复制链接]
楼主: hudi008
手机看帖
扫描二维码
随时随地手机跟帖
21
hudi008|  楼主 | 2014-10-15 22:15 | 只看该作者 回帖奖励 |倒序浏览
因此,改善磁场干扰的方式,包括两部份,一是减少磁力线的能量,包括改变电流振幅/时间变化率等,另一是减少磁力线的影响,包括缩小电流回路,拉开两者之间的距离,导体面积等方法。

电场耦合效应如图17所示,在PCB板上有两导体时会有一等效电容效应,而当左端的布线有一时变电压产生时,其右边的导体会因电场耦合效应而产生一耦合电流,此耦合电流即是因电场效应所产生的电场干扰。

磁场耦合效应如图18所示,在PCB板上有两导体回路时,当左边的回路有一时变电流产生,其右边的回路也会因磁场耦合效应而产生一耦合电压(感应电势),此电压即是因磁场效应所产生的磁场干扰。



图17

使用特权

评论回复
评分
参与人数 1威望 +1 收起 理由
8526027 + 1
22
hudi008|  楼主 | 2014-10-15 22:15 | 只看该作者

图18

产生电场干扰的原因,在于带电体的电荷重新分布,因电荷改变后会让电容两端的电压改变而不断的充放电。产生磁场干扰的原因,在于流过导体的电流在不断改变,即电流产生的磁力线会使周围导体感应出电动势,告成磁场干扰。

使用特权

评论回复
23
hudi008|  楼主 | 2014-10-15 22:15 | 只看该作者
电场与磁场的干扰起源于快速的能量(电压/电流)变化;而快速的能量变化可分两部份,一是能量本体的频率(变化率),一是能量本体的振幅(大小),而对策电磁干扰的方式不外两种,一是对策能量本体,像是抑制此能量的振幅或是改变其变化率,像是缓冲器,导通(截止)速度,更换组件的速度,变压器设计等,另一是截断干扰的耦合路径,将干扰源封闭在电源本体里面,像是用LC滤波器,铜箔,外壳等,不论使用何种方式,目的都是为了达到电磁干扰可以通过法规的需求。

使用特权

评论回复
24
hudi008|  楼主 | 2014-10-15 22:15 | 只看该作者
4.3 寄生组件的影响

在实际的电源产品中,到处都充满了寄生组件,包括组件本体的寄生组件与布线组成的寄生成份。当频率到MHz时,nH的电感与pF的电容会对EMI产生非常大的影响。

以一个环形电感来举例,多数的工程师只在意它的Al值,即绕了几圈后可以得到多少的感量,却没有去考虑到他的等效电容(ESC)与等效电阻(ESR),而在电磁干扰的领域,此等效电容与等效电阻却非常重要;理想的磁性组件,其阻抗应与频率成正比(Xl=2*pi*f*L),即频率愈高时其阻抗愈高,但在实际应用里,组件的等效电容却会抑制其阻抗特性。

如图19为一电感的阻抗与频率曲线,在频率低于共振点时,其阻抗会因频率上升而增加,但在过了共振点(Fr)后,阻抗却会因频率上升而变小,而无法达到预期的抑制效果。

使用特权

评论回复
25
hudi008|  楼主 | 2014-10-15 22:16 | 只看该作者

图19

笔者在对策电磁干扰时将频段分为二部份, 10M以下的频段与10M以上的频段,在10M以下的频段, 其对策与变压器/滤波器/布线/结构等较相关, 而在10M以上的频段, 其对策与变压器/布线/滤波器/缓冲器(Snubber&Bead)/开关组件与速度/屏敝等较相关, 因布线/滤波器/变压器在高低频皆会影响,因此笔者在此先针对布线/滤波器/变压器等(10M以下)先做介绍。

使用特权

评论回复
26
hudi008|  楼主 | 2014-10-15 22:16 | 只看该作者
5 布线(Layout)设计概念

由之前的介绍可知,电场干扰与磁场干扰是电磁干扰里最大的干扰源,不但布线的走线会大大的影响电场与磁场的耦合路径,也会因布线的寄生组件而影响电源的特性,因此良好的布线方式是从事电源设计不可缺少的能力之一,不但多数的电性问题皆因不良的布线导致,电磁干扰的好坏也与布线习习相关,不论是传导或辐射。

多数的布线工程师并不知道怎样的走线方式较好,而只认为每个节点都接到即可,愈资深的工程师则愈会对布线有所要求,以作者的经验,60%以上的电性不良皆是因布线所致,而在此将布线的基本概念概述如下:

5.1 安规距离与制程要求

此为最基本要求,任何产品皆需要达到安规规范,而不同的产线也会有不同的制程要求,像是组件本体大小,各组件之间的距离,接点大小,白漆…等,一般此规范会由各家布线工程师管控,因此在这里不做多述。

使用特权

评论回复
27
hudi008|  楼主 | 2014-10-15 22:16 | 只看该作者
5.2 电源路径与信号路径需分开

在开关电源设计里,信号可分为大电流与小电流的,以 反激式(flyback)架构为例,大电流是由输入电源进来至滤波器,桥式,大电容,变压器,初级侧开关,次级侧二极管,输出电容到输出线材等走大电流的路径称为电源路径(power trace);而走小电流的路径就称为信号路径(signal trace),像是IC周边的组件或回授电路。

电压愈大会有较大电场的产生,而电流愈大则会有愈大磁场的产生,而周边组件,特别是良导体愈靠近此电场或磁场就会耦合愈大的能量,因此在做布线安排时,尽量让电源路径与信号路径分开来走,以免信号路径被干扰产生误动作,也避免干扰源藉由其他导体放大其干扰信号,在此将电源路径与信号路径分别说明如下:

5.2.1 电源路径的基本概念

把布线的路径想象成一条水流(即电流),水流自然会往河流愈宽的地方流(走线愈粗的地方),而且也自然会往低处流(往目标,即输出端流),在电源路径上的组件皆应该照顺序流过,否则会大大地衰减其作用。

电容是储存电荷的组件,愈大的电容可储存愈多的电荷,因此在看电源路径时,可视电流由电容正端出发,经由开关组件的回路后再回到电容的负端形成开关回路。

使用特权

评论回复
28
hudi008|  楼主 | 2014-10-15 22:16 | 只看该作者
图20为一升压加反激(PFC+Flyback)架构的例子,PFC前端会有一颗小电容,PFC会由此电容形成一导通回路(绿色箭头)经电感,MOSFET,Rsense回小电容,与截止回路(紫色箭头)经电感,二极管,大电容回小电容;即电流由电容的正端出发,经一回路之后再回到电容的负端;同理,Flyback由大电容的正端开始,经变压器,MOSFET,Rsense后再回到大电容负端;输出则由变压器的正端,经输出二极管,输出电容后回到变压器的负端。



图20

因电源路径有很大的电流与电压变动,因此在布线时要注意,流过大电流的回路会产生磁场辐射,因此大电流的走线要尽量短与粗,尤其是次级侧。

使用特权

评论回复
29
hudi008|  楼主 | 2014-10-15 22:17 | 只看该作者
高电压开关的走线则要尽量减少其面积以减少电场效应,并尽量减少其相临的导体面积与之间的距离以减少等效电容,图21与22为量测反激式变压器两端的电压波形,由波形可知在MOSFET的Drain端与Diode的正端有很大的电压变化量,因此在布线时此两点的布线面积要尽可能的小,也尽量远离其他的导体以避免电场效应。



图21

使用特权

评论回复
30
hudi008|  楼主 | 2014-10-15 22:17 | 只看该作者

图22

使用特权

评论回复
31
hudi008|  楼主 | 2014-10-15 22:17 | 只看该作者
有时因为布线的考虑,无法将回路变的很短,这时我们可以靠高频电容来帮忙,像是在大电解电容同电位上并联一个陶质(高频)电容,因多数的电解电容是低频组件,而并联的高频电容可以提供开关时的高频电流,此电容可放在如图23所示的位置,在PFC端可在二极管后端并一颗小电容且靠近PFC MOSFET的地,缩短PFC截止时的回路,而Flyback端则可以在靠近变压器正与Rsense负端并一颗电容来形成较短的回路;愈短的回路可以减少电场导体与磁场回路的面积来得到更好的EMI效果。



图23

使用特权

评论回复
32
hudi008|  楼主 | 2014-10-15 22:17 | 只看该作者
5.2.2 信号路径的基本概念

凡不是电源路径(Power trace),皆可称为信号路径(Signal trace),因IC是撷取电源路径里的电压/电流信号来维持系统的稳定,因此在信号路径里最重要的就是从撷取信号源到各IC 脚端时是否干净以利IC运作。

在电磁干扰的领域里,信号路径一般需注意两点,一是辅助绕组(Vcc)回路,一是小信号回路。

辅助绕组回路如图24所示,在此举例的IC为通嘉的6 PIN IC(LD7538),其辅助绕组回路是由变压器的辅助绕组绕组,二极管,电解电容先形成一开关回路再接至IC,就如同二次侧的切换回路一般,让此开关回路愈短愈好。

IC的供电脚与地脚旁边通常需并联一颗MLCC小电容(0.1uF),此电容愈近IC愈好,因此电容是高频电容,IC在驱动MOSFET时会由此电容抽能量,且其他噪声在进IC前可先被此电容过滤一次,不论此噪声是经由偏压回路或是地的回路皆有过滤作用。

使用特权

评论回复
33
hudi008|  楼主 | 2014-10-15 22:18 | 只看该作者

图24

小信号回路是指IC的各个出脚端,信号愈小的脚位愈容易被干扰,IC在运作时不外乎侦测电压或电流信号,电压信号是由此脚位与地之间形成的电压准位来做判定,而电流信号则是由撷取信号端到IC脚位上的电流大小来决定,因信号愈小愈容易被外来的信号所干扰,尤其是不到1V的电压信号或是不到1mA的电流信号,所以在布线时要非常小心此小信号的走线。

使用特权

评论回复
34
hudi008|  楼主 | 2014-10-15 22:18 | 只看该作者
外,IC驱动MOSFET的栅极回路里也会回到IC的地而形成一电源回路,因为了减少开关损失,IC流入或流出MOSFET的栅极电流有时会超过1A以上,因此IC的输出至MOSFET的栅极与IC至地的走线也很重要,其回路就如同下图粉红色所示。

在此以反激式架构来做说明,反激式简图如图25所示,MOSFET下方会串联一电阻(Rsense)来做电流侦测,其侦测的信号通常都很小来达到低功率损失(<1V),因此布线时要注意此电阻正端截取的信号线,若此信号线在回IC前有加电阻与电容的低通滤波器(RC filter),则此电阻电容要愈靠近IC愈好,如此可让任何外来的噪声在进IC前皆被此滤波器衰减过,而电阻的负端(GND)回IC的路径也是愈短愈粗愈好,因IC是侦测电阻两端的电压来运作,路径愈短可以减少寄生电感的效应而让IC看到愈真实的信号。



图25

使用特权

评论回复
35
hudi008|  楼主 | 2014-10-15 22:18 | 只看该作者
因IC的信号一般都较小,很容易受到外来的干扰而产生误动作,因此在布线时除了要注意与电源路径的距离外,也需注意与任何会产生干扰的组件,像是与磁性组件的磁力线会影响到的周边,或是电源输入线材周边等高压电位都是需注意的地方。

电源与信号路径有一个共同接点:GND,地的走线对EMI影响非常大,参考的地回路接线方式如图26所示。



图26

使用特权

评论回复
36
hudi008|  楼主 | 2014-10-15 22:18 | 只看该作者
橙色线为Y电容建议连接法,让输出的地经由Y电容直接连至桥式整流器的负端,让雷击或ESD的能量可以快速的经由Y电容通过。

绿色线为辅助回路的建议接法,让电解电容直接回变压器的地,再单独接至大电容的地。

红色部份为IC的地建议接法,因MOSFET下方的电阻是电源路径(会走大电流),要尽量的靠近大电容来形成较小的电流回路,再由大电容拉一条线至辅助绕组的积层陶瓷电容(MLCC),再进入IC的地,而其他IC周边组件的地,即以MLCC电容为中心连接点,此接法一般称为心脏接地,即以此电容为心脏中心,IC周边下地点都接回至此电容,如此任何的地信号要进入IC的地之前,都可以先被此MLCC电容过滤成较干净的信号。

在布线时,任何大面积的导体都需要特别留意,包括散热片/外壳/输入/输出线材等,这些导体如同一天线,会放大任何在上面的信号,不但这些组件所接的位置非常重要,其经过的路径也需注意;一般来说,散热片与外壳不可空接,否则其很容易与周边组件耦合电场效应而产生高频干扰,一般会使其接一较干净,在运作时不会有电位差的电位(GND)。

在此建议的布线方式并不是最好的方式,因不同的变压器设计与布线不同,在EMI里的结果也会有差异,有时必需将干扰源抑制在二次侧或初级侧,有时则必需将干扰源由Y电容或其他组件导出以得到较佳的EMI,因此在此只提出一个布线的设计参考,使用者在对策EMI时仍需做不同的布线方式来得到最佳的EMI效果。

使用特权

评论回复
37
hudi008|  楼主 | 2014-10-15 22:18 | 只看该作者
6 EMI滤波器设计概念

6.1 基本概念

在开关电源的设计里,为了对策传导干扰大都会在输入端前端加入EMI滤波器,因传导测试是由AC端来做量测,因此滤波器愈靠近接收器效果愈好(让所有的干扰都可经由滤波器做衰减),而一般滤波器是经由电感与电容组合而成的二阶低通滤波器。

如图27所示,当干扰信号在经过接收器之前,由电感与电容组成的二阶低通滤波器来衰减高频信号,由图28可知,愈大的滤波电感或电容,可以让谐振频率点往前移而衰减更多高频信号。



图27

使用特权

评论回复
38
hudi008|  楼主 | 2014-10-15 22:19 | 只看该作者

图28

使用特权

评论回复
39
hudi008|  楼主 | 2014-10-15 22:19 | 只看该作者
6.2 耦合路径

在滤波器设计上,需确认要衰减的路径是差模还是共模,如图29所示为常用的EMI滤波电路,蓝色回路为差模滤波器,左边为L1与X1,右边则由L2与C1所组合而成的差模低通滤波器,紫色回路则为共模滤波器,分别由上端的L1与Y1,L1与Y2组合而成。



图29

使用特权

评论回复
40
hudi008|  楼主 | 2014-10-15 22:19 | 只看该作者
6.3 实际的滤波器考虑

理想的滤波器很容易理解,高频干扰经过低通滤波后衰减其高频信号。但在实际应用里,电感或电容愈大,有时并不一定有较好的EMI效果,甚至有时还会较差,这是为什么?

因真实的电感或电容,必需考虑到组件内部的等效电路,像是理想的电容,其阻抗会随着频率增加而减少,但在实际的电容器内部会有ESL与ESR,当频率与阻抗曲线在超过自谐振频率点(Fr)之后,其阻抗反而会因ESL的效应而导致频率愈高,阻抗愈大。

下面就对滤波电感与电容个别来做介绍:

电容:图30为一电容的等效电路,L为等效电感,Rs为等效串联电阻,Rp为等效并联电阻,C为其电容值



图30

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则