打印
[技术]

开关电源的电磁干扰防制技术——传导篇

[复制链接]
楼主: hudi008
手机看帖
扫描二维码
随时随地手机跟帖
41
hudi008|  楼主 | 2014-10-15 22:19 | 只看该作者 回帖奖励 |倒序浏览
实际的电容器除了电容值外,仍必需考虑其等效电感与等效电阻的影响,其特性曲线如下图所示,电容的XL是由其内部的ESL所造成,因电容是由二片金属板绕制而成,因此容值愈大,其ESL也会愈大,也因此Fr也会在愈前面,当频率过了Fr后,其阻抗会由电容性改为电感性。

由图31的阻抗等效图可以看出,电容器在低频时,确实是由电容所主导,频率增加而阻抗降低,但在过了Fr后,阻抗特性开始由电感(ESL)所主导,频率增加后阻抗反而会上升,在此频段的电容呈现一个电感的特性。



图31

使用特权

评论回复
42
hudi008|  楼主 | 2014-10-15 22:19 | 只看该作者
在此举例一0.47uF的X电容如下图32所示,左边为其外型与等效内部电路,右边则为等效内部阻抗与频率曲线图,量测得知其等效电感为0.45nH, 等效电阻为0.05ohm,我们可以看出其阻抗在1.09MHz之前是呈电容性下降,在1.09MHz时呈现急速下降至ESR的位置,并在1.09MHz后呈现电感性上升,转折频率点为



与图中转折点相同(此图为示意图,详细曲线图请确认电容器厂商规格书或用LCR设备量测)。



图32

使用特权

评论回复
43
hudi008|  楼主 | 2014-10-15 22:20 | 只看该作者
所有的电容其实都有此频率特性曲线,像是图33为一相同类型但不同容质所得出的阻抗与频率曲线,由此图形可知,不同的容质会因其容质与ESL不同而有不同的共振频率点与与频率曲线。



图33

使用特权

评论回复
44
hudi008|  楼主 | 2014-10-15 22:20 | 只看该作者
一样MLCC的电容,也会因为其介电系数的不同而影响阻抗特性曲线,如图34所示为Z5U与NPO(相同容值)所呈现出来的阻抗与频率曲线。

另外,相同材质与容质,也会因不同的包装影响其ESL而有不同的阻抗特性曲线,如图35为相同容值与材质,但包装不同(0402/0603/0805)所呈现出来的阻抗与频率曲线。



图34

使用特权

评论回复
45
hudi008|  楼主 | 2014-10-15 22:20 | 只看该作者

图35

由上面的阻抗与频率特性曲线可得知,在对策不同频段的电磁干扰时,必需考虑不同材质,不同包装的电容在此频段时的阻抗特性为何,并依此来选择电容器才能达到预期的效果。

使用特权

评论回复
46
hudi008|  楼主 | 2014-10-15 22:20 | 只看该作者
电感:图36为电感的等效电路,Rs为等效电阻,C为等效电容,L则为其电感量。



图36

与电容器相似,其频率特性曲线如图37所示,在转折频率点以下时是由电感所主导,但过了转折频率点之后,会由电感的等效电容主导,当频率愈高时阻抗反而愈小。感量愈大的电感,因其必需绕制更多圈数来得到其所需的感量,因此更多的圈数会导至更大的寄生电容,转折频率点也会较为前面,而在高频时的衰减能力也会较差,如图38所示为三颗相同环形铁心绕制不同圈数后得出的阻抗频率特性曲线,L1最多圈因此在前频段时上升最快,但也因寄生电容最大而最快被衰减。

使用特权

评论回复
47
hudi008|  楼主 | 2014-10-15 22:20 | 只看该作者
另外,电感的等效电容与电感的绕法/圈数有很大的关系,一般是圈数愈多会有愈大的等效电容,但电感的绕制可以用绕法的不同,像是十字绕法,蝴蝶绕法…等方式,用相同的电感但不同的绕法来得到相同感量但减少其等效电容,藉此来得到较佳的EMI效果。



图37



图38

使用特权

评论回复
48
hudi008|  楼主 | 2014-10-15 22:21 | 只看该作者
7 变压器在传导的设计概念

一般工程师对变压器的观念,就是用铜线在铁粉心的铁心上绕线,并根据不同的圈数与感量,可得到不同的工作周期,电流变化率与MOSFET/DIODE的电压应力;但在EMI的领域里,变压器的设计就没有这么简单,经验丰富的工程师都知道良好的变压器设计在EMI里占有举足轻重的地位,下面就一一来介绍:

7.1 变压器的基本概念

一般开关电源的变压器皆是使用铁粉心(Ferrite Core)制成其铁心,再由线圈绕制在铁心上而成,以图39左边所示为一线圈绕制在铁心中间时,因电流在铁心里所产生的磁通方向。



图39

使用特权

评论回复
49
hudi008|  楼主 | 2014-10-15 22:21 | 只看该作者
如图40与41简易的反激式线路图与波形,此为一65W在230V输入时的工作情形,量测变压器初级与次级侧(如图所示探棒位置),因开关电源是靠开关做快速开关来得到稳定的输出,当MOSFET开关关断时,初级开关的Drain pin会由低电压提升至高电压,同时次级二极管端也会同样的由低压至高压,但初级侧电压的电位差会远高于次级侧电压,由之前的观念可知道,两导体之间会有耦合电容,而此电容会因电位差而产生一电流,如图42所示,当初级侧导体的电压高于次级侧时,将会有一电流由初级侧导体经由耦合电容流入次级侧(如绿色箭头);同理,当开关导通时,初级与次级导体的电压会由高电压降低至低电压,由于初级侧的电位差比次级侧较大,因此这时也会有一电流由次级侧导体流入初级侧(如紫色箭头)。



图40




使用特权

评论回复
50
hudi008|  楼主 | 2014-10-15 22:21 | 只看该作者

图41



图42

使用特权

评论回复
51
hudi008|  楼主 | 2014-10-15 22:21 | 只看该作者
在成型的变压器铁心内部会有多数铜线绕制而成,其结构图如图43所示,此为一三明治绕法的变压器,紫色为变压器铁心,蓝色为初级侧铜线,棕色为二次侧铜线,绕制顺序为:最内层由MOSFET的Drain pin开始由下往上绕,接着再绕二次侧,最后再接着初级的线圈由上往下绕下来,达成三明治绕法(将二次侧夹在内层),但初级导体与次级导体之间因距离很靠近,所以在两者之间会有耦合电容的产生,就如红色电容所示。

由刚才的波形可得知,MOSFET的Drain pin与二极管的A端是电压变动率最大的地方,而变压器线圈的另一边是静点(因直接连接电容,电压无法瞬间变化),所以内部线圈的电位差是由变化量最大的一端往另一端减小,就如图44紫色所标示一样,线圈愈靠近MOSFET的Drain pin或是二极管的A端有较大的电位差,而电位差的变动量随着往另一端愈近而愈小。



图43

使用特权

评论回复
52
hudi008|  楼主 | 2014-10-15 22:21 | 只看该作者

图44

因此在实际的变压器绕制上,都会建议变压器最内层是由电位差变化最大的点开始起绕,让愈外层的铜线其电位差愈小,如此可让最内层高压变化的电场被其他相对电位较小的导体包覆在里面来减低其对外的辐射效应。另外,在做变压器设计时,若一开始就可以考虑此因绕组电位差所导致的电场效应,将可大大地减少EMI除错时间。

使用特权

评论回复
53
hudi008|  楼主 | 2014-10-15 22:22 | 只看该作者
除了介于初级与次级侧之间的层间电容之外,初级侧本身与次级侧本身之间也会存在着耦合电容如图45红色所示,而在变压器线路里其等效的寄生电容如图46所示,红色为介于初级与次级之间,黄色则为初级本身与次级本身。此电容量会随着圈数的增加而上升,而此电容量也会引起高频电场干扰。



图45



图46

使用特权

评论回复
54
hudi008|  楼主 | 2014-10-15 22:22 | 只看该作者
7.2 内铜

因介于变压器初级侧与次级侧的耦合电容会引起严重的电场干扰,因此一般会在初级侧与次级侧之间做电场隔离来减少电场效应,一般使用的方式是在初级与次级之间加一层内铜箔或是铜线做电场隔离,如图47所示为加了铜箔的变压器,内铜箔介在初级与次级之间,由高电位差引起的耦合电流大部份会经过红色的耦合电容至铜箔而形成另一个回路,大大地减少了耦合至另一侧的耦合电容。

若将此铜箔下PIN回初级侧(可以是地或是高压),相当于初级侧产生的高电位差,经由电容效应到铜箔上,再经由铜箔回到初级侧本身,形成一初级侧的电流回路,帮助初级侧电场电流回到初级侧而做到电场隔离;如此只剩下少部份的如图48黄色的耦合电容,大大地减少电容效应来达到减少电场干扰的作用。



图47

使用特权

评论回复
55
hudi008|  楼主 | 2014-10-15 22:22 | 只看该作者

图48

7.3 Y电容

一般在变压器的初级与次级侧,我们都会在两端的地之间放一颗Y电容,而此Y电容的作用也与上述的一二次侧耦合电容相关;如图49线路所示,红色的Y电容介在初次级侧之间,而初级侧电压变动所导致的电容效应,即耦合至次级侧的电流,可以多了一个路径,即经由此Y电容回到初级侧,大大的减少共模路径的干扰。(若没有此Y电容,则大部份的耦合电流都会经由大地FG回至初级侧)

使用特权

评论回复
56
hudi008|  楼主 | 2014-10-15 22:22 | 只看该作者
也因为Y电容是给予初级次级侧一路径,因此连接的位置与大小也很重要,电容Xc的阻抗为1/2*π*f*c,代表频率愈高时,其阻抗愈低,高频信号愈可以由Y电容流入另一侧,但决定的因素却是因变压器与布线不同而有不同差异,因对策有时需将干扰源留在内部较好,有时却是将其流入外部较好,因此不同的案子都必需对Y电容做些调整。



图49

使用特权

评论回复
57
hudi008|  楼主 | 2014-10-15 22:23 | 只看该作者
7.4 漏磁

变压器的漏感(漏磁通)不但会造成初级侧开关Vds过高,也会对EMI产生很大的影响。

一般开关变压器的铁粉心里都没有气隙,因此实际使用时都会因饱和问题而将铁心磨气隙,而漏磁最大的地方就在气隙周边,在设计时要尽量选择将气隙放在变压器内部中心处的铁心,再用导体或铜箔做屏敝来减低其漏磁的影响,而气隙中间的漏磁通如图50虚线所示。

除了气隙外,虽大部份的磁通会经由导磁路径(即变压器铁心)形成一回路,但仍会有些许漏磁会在变压器外部形成漏磁通,此漏磁通如图50蓝色箭头所示,漏磁产生的磁场干扰很容易会影响周围的导体或组件。而减少干扰的方法,一是对变压器进行磁场屏蔽,另一是尽量拉开与变压器漏磁通之间的距离,或尽量减少在其周边的电流导体面积。



图50

使用特权

评论回复
58
hudi008|  楼主 | 2014-10-15 22:23 | 只看该作者
7.5 外铜箔

所谓的外铜箔是在变压器铁心外围包覆一铜箔,包覆方式可延着铁心包覆或是延着线包包覆,也可以同时包覆铁心与线包(十字包法),简易如图51所示,左边为铁心包覆,中间为线包包覆,右边则为十字包法,而铜箔两端接触后需相连并下地,如此不但可作电场屏蔽也可作磁场屏蔽。

非导磁材料一般是无法对磁通有屏蔽作用的,但铜箔是良导体,漏磁通穿过铜箔时会产生涡流,而涡流产生的磁场正好可抵消变压器的漏磁通,如此来抑制漏磁所造成的磁场干扰。而铜箔的良导体特性也会抑制电场耦合效应,就如内铜箔的作用一样。



图51

使用特权

评论回复
59
hudi008|  楼主 | 2014-10-15 22:23 | 只看该作者
8 对策EMI——传导的方法

在做传导测试时,可先依下面做些确认。

8.1 确认测试方式

首先必需确认测试方式是否正确,不正确的测试方式会浪费很多时间,确认的地方包括测试法规为何/测试电压为何(不同国家有不同电压输入)/待测物是系统或是仿真负载/系统的工作模式(是否过载或动态负载)/系统的周边(monitor,USB或硬盘)是否会造成干扰源/输出或电源线是否需下地/外接设备的地线是否与主电源的地线有分开/是否先空扫一次确认接收器的误差…等等;建议在开始对策之前,先确认以上的测试环境是否正确,再开始做对策;笔者就有过对策一个下午后,才发现其中一项设定错误,白白浪费一个下午时间的经验。

8.2 确认导体的天线效应

任何的导体在测试EMI时都会有天线效应,因此建议使用客户量产所用的线材,包括输入线材与输出线材(不同的线材会有些许的差异),而散热片一般会下地(或一参考电位),外面有铝壳或金属导体时也要下地,避免导体因电场或磁场效应而产生干扰,成品的组件组装上也需注意是否有远离干扰源,任何导体经过磁性组件周边时也要注意磁性组件漏磁通所带来的干扰。

8.3 在150KHz~10MHz的频段一般是由操作频率的倍频差模信号加上共模信号所组成,一般对策方式为修改EMI低通滤波器/变压器耦合路径/Y电容大小/布线方式等来做对策,可依**前面所述方法做确认。

使用特权

评论回复
60
hudi008|  楼主 | 2014-10-15 22:23 | 只看该作者
9 结语

电磁干扰(EMI)的防制在电源设计里是门很重要的学问,此篇**将EMI传导的法规,量测法做介绍,并解释传导的一些基本概念,包括电场干扰与磁场干扰等,并分析布线,EMI滤波器与变压器设计对EMI的干扰等。

所有的EMI问题,其实皆因高速的电压变动所产生的电场干扰,或是高速的电流变动所产生的磁场干扰,并搭配组件或布线的高频路径(包括寄生电感与电容)所产生,因此只要知道开关电源的电场与磁场来源,并知道各组件内部的等效电路与布线路径,就可以知道用怎样的方式可得到较佳的EMI结果。

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则