全波算法又称低频或精确算法,它是求解电磁兼容问题的精确方法。对 于给定的计算机硬件资源,此类方法所能仿真的电尺寸有其上限。一般来说,在没有任何限制条件下,即任意结构任意材料下,TLM和FI能够仿真的电尺寸最 大,其次是FD,再者为FEM,最后是MoM和BEM。若对于金属凸结构而言,MLFMM则是能够仿真电尺寸最大的全波算法。
时域算法的固 有优势在于它非常适用于超宽带仿真。电磁兼容本身就是一个超宽带问题,如国军标GJB151A RE102涉及频段为10kHz直至40GHz六个量级的极宽频带。另外,对于瞬态电磁效应的仿真,如强电磁脉冲照射下线缆线束上所感应起来的瞬态冲击电 压的仿真,采用时域算法是自然、高效、准确的。
3、2D求解器 2D 求解器是最简单和效率最高的,只适合简单应用。例如,2D静态求解器可以提取片上互连线横截面的电容参数。2D准静态求解器可以提取均匀多导体传输线横截 面上单位长度低频RLGC参数。2D全波求解器可以提取均匀多导体传输线横截面上的全频RLGC参数。典型的2D全波计算方法有:2D边界元法、2D有限 差分法、2D有限元法。
4、2.5D求解器 2.5D 的概念是20世纪80年代Rautio在美国雪城大学攻读博士期间提出的,当时他在Roger教授手下做GE电子实验室支助下做平面MOM算法的研究。在 那个年代,人们只有2D电流(XY方向)和3D电磁场的概念。GE电子实验室的人比较关注电流,称其为2D,而Roger教授关注是电磁场,并称之为3D 的。Rautio和这两个团队都有合作,当时,他正在读一本关于分形理论的书,书里清晰定义了分维度的概念,于是,Rautio得到启发,提出2.5D的 概念,这也是分形维度理论第一次被用到电磁场领域。
“2.5D solver”的意思是,这个solver使用的是全波公式,公式中包含多层介质中的6个电磁场分量(XYZ方向电场E和XYZ方磁场H),以及2个传导 电流分量(如X和Y方向)。其利用多层介质的全波格林函数,采用矩量法的步骤,将一个3D问题缩减为金属表面问题。这样就不需要对整个三维空间划分网格, 只需要在金属表面划分网格即可。此外,2.5D意味着传输线的金属厚度被忽略,这种做法对线宽大于金属厚度的平面电路结构(PCB应用)可以很好地近似, 甚至可以说半解格林函数的精度在计算多层介质结构方面比一般3D solver还要高。
考虑了金属厚度并包含Z方向传导电流的2.5D solver称作为3D平面算法。这里的3D的意思是这个solver可以用作多层介质的公司来求解一些3D结构,比如传输线或者过孔。但是 Bondwire是不可以用这种方法来做的,全波意味着辐射被考虑在公式里面,或者说,置换电流分量被考虑在Maxwell方程组里面。
2.5D TEM求解器适合用于结构中以TEM模式为主的情况,即在电磁场传播方向没有电场和磁场分量,工作频率比较低的电源平面对结构符合这一情况。但是,3D效应,共平面设置或缺少参考平面的设计都会降低这种方法的精度。
2.5DBEM/MOM 求解器是一种全波求解器,它基于边界元法或矩量法公式,利用层状介质格林函数来求解,通常假设介质层数无穷大的平面。但是,对于封装和封装-电路板连接处 存在的3D边缘效应,3D几何结构和有限大介质层精度不高。代表软件Ansys Designer,MicroWave Office,IE3D, Feko,Sonnet。
5、3D求解器 3D准静态求解器适合芯片-封装-电路板系统中出现大多数3D结构,但对低频有效,高频结果误差较大,如果结构较大,计算时间会很长,消耗内存也比较大。
|