| 
 
| DS18B20 参考资料:
 
 
   
 https://pan.baidu.com/s/12PtTZ8x602_XqnqFnq_Z6g
 提取码:c77i
 
 
 
 常见的驱动原理图:
 
 
   
 读取DS18B20 Memory Map数据效果:
 
 
   
 STM32CubeMX配置内容
 
 使用了一个基本定时器6,作为DS18B20时间基准用。
 
 
   
 分频系数是根据所挂载的时钟总线决定的,定时器一般都是挂载在APB1或者APB2时钟总线上的,不同型号的STM32系列单片机主时钟频率不一样。像stm32F103主频72MHz,stm32f401主频84MHz,具体的分频系数根据主频来分即可。最终分的频率1MHz也就是1us周期.
 
 
 时钟源
 
 
   
 DS18B20引脚配置(注意给引脚添加名为DS18B20标签,方便导入ds18b20源文件之后,不用做任何代码修改)
 
 
   
 串口配置
 
 配置一个串口用于将读取DS18B20数据打印输出。
 
 在usart.c文件中添加如下代码,用于printf打印输出,同时这Keil设置里面勾选MicroLib选项。
 #include "stdio.h"
 /*可调用printf*/
 int fputc(int ch,FILE *f)
 {
 /*&huart1指的是串口1,如果用别的串口就修改数字*/
 HAL_UART_Transmit(&huart1 , (uint8_t *)&ch , 1 , 1000);
 return ch;
 }
 
 
 添加必要的源文件
 
 onewire.c
 
 ds18b20.c
 
 在ds18b20.h文件中修改宏:(根据个人配置的定时器,修改下面的定时器句柄)
 #define        _DS18B20_TIMER                htim6
 
 
 
 主程序代码
 /* USER CODE BEGIN Header */
 /**
 ******************************************************************************
 * @file           : main.c
 * @brief          : Main program body
 ******************************************************************************
 * @attention
 *
 * Copyright (c) 2023 STMicroelectronics.
 * All rights reserved.
 *
 * This software is licensed under terms that can be found in the LICENSE file
 * in the root directory of this software component.
 * If no LICENSE file comes with this software, it is provided AS-IS.
 *
 ******************************************************************************
 */
 /* USER CODE END Header */
 /* Includes ------------------------------------------------------------------*/
 #include "main.h"
 #include "tim.h"
 #include "usart.h"
 #include "gpio.h"
 
 /* Private includes ----------------------------------------------------------*/
 /* USER CODE BEGIN Includes */
 #include "stdio.h"
 #include "onewire.h"
 #include "ds18b20.h"
 #include "string.h"
 /* USER CODE END Includes */
 
 /* Private typedef -----------------------------------------------------------*/
 /* USER CODE BEGIN PTD */
 
 /* USER CODE END PTD */
 
 /* Private define ------------------------------------------------------------*/
 /* USER CODE BEGIN PD */
 /* USER CODE END PD */
 
 /* Private macro -------------------------------------------------------------*/
 /* USER CODE BEGIN PM */
 
 /* USER CODE END PM */
 
 /* Private variables ---------------------------------------------------------*/
 
 /* USER CODE BEGIN PV */
 float temperature;
 char message[64];
 /* USER CODE END PV */
 
 /* Private function prototypes -----------------------------------------------*/
 void SystemClock_Config(void);
 /* USER CODE BEGIN PFP */
 
 /* USER CODE END PFP */
 
 /* Private user code ---------------------------------------------------------*/
 /* USER CODE BEGIN 0 */
 
 /* USER CODE END 0 */
 
 /**
 * @brief  The application entry point.
 * @retval int
 */
 int main(void)
 {
 /* USER CODE BEGIN 1 */
 
 /* USER CODE END 1 */
 
 /* MCU Configuration--------------------------------------------------------*/
 
 /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
 HAL_Init();
 
 /* USER CODE BEGIN Init */
 
 /* USER CODE END Init */
 
 /* Configure the system clock */
 SystemClock_Config();
 
 /* USER CODE BEGIN SysInit */
 
 /* USER CODE END SysInit */
 
 /* Initialize all configured peripherals */
 MX_GPIO_Init();
 MX_USART1_UART_Init();
 MX_TIM6_Init();
 /* USER CODE BEGIN 2 */
 DS18B20_Init(DS18B20_Resolution_12bits);
 /* USER CODE END 2 */
 
 /* Infinite loop */
 /* USER CODE BEGIN WHILE */
 while (1)
 {
 /* USER CODE END WHILE */
 
 /* USER CODE BEGIN 3 */
 DS18B20_ReadAll();
 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_SET);
 DS18B20_StartAll();
 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_RESET);
 uint8_t ROM_tmp[8];
 uint8_t i;
 for (i = 0; i < DS18B20_Quantity(); i++)
 {
 if (DS18B20_GetTemperature(i, &temperature))
 {
 DS18B20_GetROM(i, ROM_tmp);
 memset(message, 0, sizeof(message));
 sprintf(message, "%d. ROM: %X%X%X%X%X%X%X%X Temp: %f\n\r", i, ROM_tmp[0], ROM_tmp[1], ROM_tmp[2], ROM_tmp[3], ROM_tmp[4], ROM_tmp[5], ROM_tmp[6], ROM_tmp[7], temperature);
 printf("message=%s \r\n", message);
 // HAL_UART_Transmit(&huart1, (uint8_t *)message, sizeof(message), 100);
 }
 }
 printf("message=%s \r\n", message);
 //        HAL_UART_Transmit(&huart1, (uint8_t *)"\n\r", sizeof("\n\r"), 100);
 HAL_Delay(1000);
 HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_7);
 }
 /* USER CODE END 3 */
 }
 
 /**
 * @brief System Clock Configuration
 * @retval None
 */
 void SystemClock_Config(void)
 {
 RCC_OscInitTypeDef RCC_OscInitStruct = {0};
 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
 
 /** Initializes the RCC Oscillators according to the specified parameters
 * in the RCC_OscInitTypeDef structure.
 */
 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
 RCC_OscInitStruct.HSEState = RCC_HSE_ON;
 RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
 RCC_OscInitStruct.HSIState = RCC_HSI_ON;
 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
 RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
 RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
 if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
 {
 Error_Handler();
 }
 
 /** Initializes the CPU, AHB and APB buses clocks
 */
 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
 |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
 
 if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
 {
 Error_Handler();
 }
 }
 
 /* USER CODE BEGIN 4 */
 
 /* USER CODE END 4 */
 
 /**
 * @brief  This function is executed in case of error occurrence.
 * @retval None
 */
 void Error_Handler(void)
 {
 /* USER CODE BEGIN Error_Handler_Debug */
 /* User can add his own implementation to report the HAL error return state */
 __disable_irq();
 while (1)
 {
 }
 /* USER CODE END Error_Handler_Debug */
 }
 
 #ifdef  USE_FULL_ASSERT
 /**
 * @brief  Reports the name of the source file and the source line number
 *         where the assert_param error has occurred.
 * @param  file: pointer to the source file name
 * @param  line: assert_param error line source number
 * @retval None
 */
 void assert_failed(uint8_t *file, uint32_t line)
 {
 /* USER CODE BEGIN 6 */
 /* User can add his own implementation to report the file name and line number,
 ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
 /* USER CODE END 6 */
 }
 #endif /* USE_FULL_ASSERT */
 
 
 
 
 
 工程源码
 
 申明:本文章仅发表在CSDN网站,任何其他网站,未注明来源,见此内容均为盗链和爬取,请多多尊重和支持原创!
 
 对于文中所提供的相关资源链接将作不定期更换。
 链接: https://pan.baidu.com/s/135YLGiKKnzUwAcbv9fRTtg
 提取码: 582k
 
 
 
 更新补充(2024-6-26)
 
 串口单线通讯读取DS18B20
 
 原理实现介绍可以参考《爆改串口实现OneWire驱动DS18B20》
 
 原理图如下:
 
 
   
 或者:
 
 
   
 缺点就是需要使用一个串口。经测试这种方式读取的温度,和其他方式读取的差异加到,需要修正。
 下图对比:
 
 
   
 差不多同一时刻,其他方式读取:
 
 
   
 
 工程配置
 
 配置2个串口,一个串口用于查看打印信息,另一个用于与DS18B20通讯。
 
 波特率都默认为115200,异步通讯方式
 
 
   
 程序源码
 链接:https://pan.baidu.com/s/13BAAIm7janpgBu5smROY7w?pwd=ub41
 提取码:ub41
 
 
 测试效果:
 
 
   
 ————————————————
 
 本文为Perseverance52博主原创文章,未经博主允许,不得转载!
 
 原文链接:https://blog.csdn.net/weixin_42880082/article/details/129859344
 
 
 | 
 |