推荐随着现场可编程门阵列(FPGA)已发展成为真正的可编程系统级芯片,利用这些芯片设计印制电路板(PCB)的任务变得愈加复杂。目前动辄数百万门的电路密度和6Gbps以上的收发器数据传输率及其它考虑事项影响着系统开发人员在机械和电气方面的板级设计工作。裸片、芯片封装和电路板构成了一个紧密连结的系统,在这个系统中,要完全实现FPGA的功能,需要对PCB板进行精心设计。
采用高速FPGA进行设计时,在板开发之前和开发期间对若干设计问题进行考虑是十分重要的。其中包括:通过滤波和在PCB板上的所有器件上均匀分配足够功率来减小系统噪声;正确端结信号线,以把反射减至最小;把板上迹线之间的串扰降至最低;减小接地反弹和Vcc降低(也称为Vcc凹陷)的影响;正确匹配高速信号线上的阻抗。
任何人在为性能极高的FPGA设计IC封装时,都必须特别注意信号完整性和适于所有用户和应用的多功能性之间的平衡问题。例如,Altera最大的Stratix II
GX器件采用1,508引脚封装,工作电压低至1.2V,并具有734个标准I/O、71个低压差分信令(LVDS)信道。它还有20个高速收发器,支持高达6.375Gbps的数据率。这就让该架构能够支持许多高速网络和通信总线标准,包括PCI
Express和SerialLite II。
在设计中,用户可以通过优化引脚排列来减少串扰。信号引脚应该尽可能靠近接地引脚,以缩短封装内的环路长度,尤其是重要的高速I/O。在高速系统中,主要的串扰源是封装内信号路径之间的电感耦合。当输出转换时,信号必须找到通过电源/接地平面的返回路径。环路中的电流变化产生磁场,从而在环路附近的其它I/O引脚上引起噪声。同时转换输出时,这种情形加剧。因为环路越小,感应就越小,故电源或接地引脚靠近每个高速信号引脚的封装可以把附近I/O引脚上的串扰影响减至最小。
为了把电路板成本降至最低,并把所有信号路径的系统信号完整性提高到最大,需要对电路板材料、分层数目(堆叠)和版图进行精心的设计和构建。把数百个信号从FPGA发送到板上或其周围是一个很困难的任务,需要使用EDA工具来优化引脚的排列和芯片的布局。有时采用稍微大点的FPGA封装能够降低板成本,因为它可以减少电路板的层数及其它的板加工限制。
PCB板上的一条高速信号路径,由一条板上迹线代表,其对中断非常敏感,如电路板层和电路板连接器之间的通孔。这些及其它中断都会降低信号的边缘速率,造成反射。因此,设计人员应该避免通孔和通孔根(via
stub)。如果通孔是不可避免的,应让通孔引线尽可能地短。对差分信号进行布线时,让差分对的每一条路径使用一个相同结构的通孔;这就让通孔引起的信号中断处于共模中。如果可能的话,在常规通孔处使用盲孔。或使用反钻,因为通孔根的损耗导致的中断会更少。
为了改善时钟信号的信号完整性,应该遵循以下原则:
在时钟信号被发送到板上元件之前,尽可能将之保持在单个板层上;始终以一个平面作为最**面。
沿邻近接地平面的内层发送快速边缘信号,以控制阻抗,减小电磁干扰。
正确端结时钟信号,以把反射降至最小。
最好使用点对点时钟迹线。
图1:将串扰降至最低的指导原则。
某些FPGA,如Stratix II
GX系列,带有支持数种I/O标准的片上串联端接电阻。这些片上电阻可被设置为25欧姆或50欧姆的单端电阻,支持LVTTL、LVCMOS和SSTL-18或SSTL-2单端I/O标准;此外,还支持100欧姆的LVDS和HyperTransport输入端片上差分匹配电阻。差分收发器I/O带有可编程为100、120或150欧姆的片上电阻,并可自动校准是反射最小化。
利用内部电阻代替外部器件对系统有好几个好处。片上端接可以消除引线的影响,并使传输线上的反射最小,从而提高信号完整性。片上端接还使所需的外部元件被减至最少,设计人员可以使用较少的电阻、较少的板线迹,减小板空间。这样一来,就可以简化版图,缩短设计周期,降低系统成本。由于板上元件较少,电路板可靠性也得以增强。
串扰抑制
电路板设计中,为了尽量减少串扰,微带线和带状线的布线可以遵循几种指导原则。对于双带线版图,布线是在两层内板上进行,两面都有一个电压参考面,这时最好所有邻近层板的导线都采用正交布线技术,尽量增大两个信号层之间的介质材料厚度,并最小化每个信号层与其邻近参考平面间的距离,同时保持所需要的阻抗。
微带线或带状线布线指导原则
线迹间距至少三倍于电路板布线层间介质层的厚度;最好使用仿真工具预先模拟其行为。 |