打印

无极灯镇流器(逆变器)的技术核心简述

[复制链接]
1798|1
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
czcoil|  楼主 | 2011-4-7 10:50 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
无极灯是Promise Light(electrodeless lamp)高频电磁等离子体放电灯的简称,由灯泡/管、耦合器(内外置)、电子镇流器(高、低频)三部分组成。镇流器起电频转换和驱动作用,耦合器(电磁转换)与灯泡/管是镇流器的负载。

  当市电通过高频镇流器变频后,产生一个2-3MHz高频正弦电流,通过功率耦合器建立一个高频磁场,在高频磁场的作用下,在涂有稀土荧光粉的玻璃泡壳内瞬间产生高频电场,使泡壳内部的汞原子发生电离雪崩效应,从而产生253.7nm的强紫外线,稀土荧光粉在强紫外线的作用下从而发出可见光(低频无极灯的频率在180-250KHz)。由于玻璃泡壳内壁涂有氧化铝金属粉层,相当于在泡壳内壁建立了一个金属屏蔽层,从而阻挡了电磁波外泄,这使得高频无极灯不会产生超出国际标准的电磁空间辐射。

  由于无极灯灯泡/管内没有金属电极,灯体部分不存在易损元件,所以这类灯的寿命非常长,可达到6-10万小时以上。

  无极灯镇流器是将85V~265V 50Hz/60Hz的电网电能高可靠、高效率地转换为驱动灯泡/管所需的高频(180-250KHz;2-3MHz)交流形式电能。灯泡/管的特性决定了整个系统的寿命主要取决于高频电子镇流器高可靠、高稳定的运行寿命的技术、材料保证。

  无极灯的灯泡/管具有三个特性:

  1.       负阻特性;即灯管等效阻抗随温度T的上升,阻抗呈下降状态,若镇流器无限流功能,灯管功率将不断上升直至电路或灯管损坏。

  2.       启动特性;启动时需高达数千伏特的电压和足够的功率,才能使灯管气体由高阻状态进入工作时的额定等效阻抗(从电特性对灯管工作的分析)。

  3.       温度特性;即环境温度的不同,使灯管的初始等效阻抗值相差巨大,这一特征对灯管在低温下启动有明显影响。

  根据以上特性,拟从灯泡/管和驱动供电两个方面着手解决:

  与普通日光灯管/HID的方法一样,负载与电源之间串接一只电感器,该电感器即镇流器电感或则叫扼流电感,电感器稳定负载电流的原理是一种负反馈调节,普通工频情况下,为达到镇流器所需的电感量,其体积大,重量重,为减小体积和重量,则要提高工作频率,因而引入了变频器,这就是节能灯、无极灯电子镇流器。因变频以及提高功率因数又带来了电磁干扰问题,又不得不增加电路来解决电磁干扰,为实现镇流,把电路搞得复杂与庞大。

  启动问题,普通日光灯/HID的启动是利用镇流器电感反向冲击电压与电源电压叠加实现高压启动。无极灯电子镇流器则利用谐振原理产生高压实现启动。启动时除了高压要求之外,另一个重要参数即功率,只有启动电流达到灯泡/管启动功率要求,方可有效启动灯泡/管。

  灯泡/管的第三个特征,就是因温度下降,灯管初始等效阻抗大幅提高,使得在相同谐振电压情况下,启动电流相对减少,影响灯管的启动,造成启动困难。

  此外,无极灯与灯具的恰当配合保证良好的散热效果,也是充分发挥无极灯优良性能的一个很重要的部分。

无极灯镇流器技术重点研究问题之一:变频过程中的效率问题

  镇流器效率的高低,直接影响无极灯是否高效节能。在研究解决效率问题中,本人认为,在保障电路正常、安全工作的原则下,设计电路时:一是要尽可能减化电路;二是要系统所有参数以最优为目标(杜绝短板效应)、并以降耗为第一原则,成本考虑放在其次。

  镇流电路中的元件都是物理元件,只要工作必然产生损耗,而不同的元件其产生损耗的性质是不一样的,可分为两类:一类为固定损耗类,例如 二极管、电阻、导线等。此类元件的参数设计简单,只需根据电路原理、功率、耐压等一些基本参数要求,精选元件就能实现最低能量损耗的电路设计。第二类为可变损耗类,如 场效应管(三极管)、电容、电感,此类元件的参数设计是降耗的关键,设计得好功耗低、设计不好功耗大幅上升。设计中不仅要考虑单个元件的参数,而且要考虑电路的整体优化,是一项系统性很强的工作。

  使用场效应管作开关管时,驱动性能是影响场管功耗的重要原因,通常会设计一些电路来保证驱动波形的上升速率和下降速率,使波形陡峭。例如开通时的加速电路、关闭时抽取贮存电荷等等。测试部分厂家的产品,发现这样一种现象,有的镇流器波形虽好,但功耗仍较大、场管温度也较高,时有烧管现象;有的产品波形虽一般,功耗并非想像中那麽差、温度也不很高,故障现象也不明显。如果只从驱动上分析,解释不通这种现象。但把驱动、电路、负载特性、电源供电、结合电路一起作理论分析,即系统参数优化(杜绝短板效应),就证明这种现象存在的合理性。

  在设计、生产镇流器时是按优化电路模型计算、调整各个部分的参数,使产品自身功耗下降、而可靠性、稳定性就得以提高。

  贮能元件电容、电感,变压器是非线性的,其能耗参数设计是很多厂家忽视的一环,一般只考虑了电路功能的需要,而较少在降耗上下功夫。这些元件在理论状态下只进行能量交换而耗能不多,但由于实际上参数设计、材料选取、制作工艺的区别,最终出现耗能相差甚远,而这正是大功率无极灯镇流器设计生产中值得所有厂家深入研究的一环。

  除了基波外,包含各种畸变的输入电流还含有很丰富的高次谐波分量,这些过高的谐波分量会对公共电网造成严重影响,从而形成谐波干扰。这种周期性尖脉冲电流更窄,会使直流脉动电压起伏变大,使灯电流的波峰系数变大,对灯泡/管极为不利。同样,灯的光通量起伏也加大,对人的视力造成较大损害。直流脉动电压起伏变大也会使得开关管不能处于最佳工作状态,容易发热而导致损坏,镇流器的使用寿命将大大缩短,得不偿失。

  抑制谐波的改进措施就是尽可能提高其功率因数,减小输入电流的谐波失真。要达到这个目的,就必须提高整流管的导通率(即延长输入电流的导通时间),使得电源电流的波形接近电压的正弦波,减小电流的波形失真;同时又要保证电源滤波电容能平滑地向负载连续供电(即减小输入电流与输入电压间的相位差)。这就是通常所说的功率因数校正电路工作原理。功率校正电路分无源校正(PPFC)和有源校正(APFC)。目前,小功率一体化无极灯电子镇流产品限于成本价格因素,大都采用改进型逐流电路组成的无源谐波抑制电路。这种技术发展得比较成熟,只要调试得当,镇流器的谐波含量基本可以得到有效的抑制,功率因数可达到0.85-0.90。但这种电路存在调试难度高,在大量生产时难以控制产品质量的问题,而且基本上无法同时满足电磁兼容标准和性能标准要求。而有源校正则是采用三极管等分立有源器件组成的谐波抑制电路,或采用专用集成电路的谐波抑制电路,功率因数一般都可达到0.95-0.99以上。而且后者调试要比前者简单,可靠性更高。

相关帖子

发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

0

主题

1

帖子

1

粉丝