2 高级语言:从浮点到定点
我们在编写DSP模拟算法时,为了方便,一般都是采用高级语言(如C语言)来编写模拟程序。程序中所用的变量一般既有整型数,又有浮点数。如例1.1程序中的变量i是整型数,而pi是浮点数,hamwindow则是浮点数组。
例1.1 256点汉明窗计算
int i;+
float pi=3.14l59;
float hamwindow[256];
for(i=0;i<256;i++) hamwindow=0.54-0.46*cos(2.0*pi*i/255);
如果我们要将上述程序用某种足点DSP芯片来实现,则需将上述程序改写为DSP芯片的汇编语言程序。为了DSP程序调试的方便及模拟定点DSP实现时的算法性能,在编写DSP汇编程序之前一般需将高级语言浮点算法改写为高级语言定点算法。下面我们讨论基本算术运算的定点实现方法。
2.1 加法/减法运算的C语言定点摸拟
设浮点加法运算的表达式为:
float x,y,z;
z=x+y;
将浮点加法/减法转化为定点加法/减法时最重要的一点就是必须保证两个操作数的定标
temp=x+temp;
z=temp>>(Qx-Qz),若Qx>=Qz
z=temp<<(Qz-Qx),若Qx<=Qz
因为z的Q值为0,所以定点值z=35000就是浮点值,这里z是一个长整型数。当加法或加法的结果超过16位表示范围时,如果程序员事先能够了解到这种情况,并且需要保持运算精度时,则必须保持32位结果。如果程序中是按照16位数进行运算的,则超过16位实际上就是出现了溢出。如果不采取适当的措施,则数据溢出会导致运算精度的严重恶化。一般的定点DSP芯片都没有溢出保护功能,当溢出保护功能有效时,一旦出现溢出,则累加器ACC的结果为最大的饱和值(上溢为7FFFH,下溢为8001H),从而达到防止溢出引起精度严重恶化的目的。
2.2乘法运算的C语言定点模拟
设浮点乘法运算的表达式为:
float x,y,z;
z=xy;
假设经过统计后x的定标值为Qx,y的定标值为Qy,乘积z的定标值为Qz,则
z=xy
zq*2-Qx=xq*yq*2-(Qx+Qy)
zq=(xqyq)2Qz-(Qx+Qy)
所以定点表示的乘法为:
int x,y,z;
long temp;
temp=(long)x;
z=(temp*y)>>(Qx+Qy-Qz);
例1.5定点乘法。
设x=18.4,y=36.8,则浮点运算值为=18.4*36.8=677.12;
根据上节,得Qx=10,Qy=9,Qz=5,所以
x=18841;y=18841;
temp=18841L;
z=(18841L*18841)>>(10+9-5)=354983281L>>14=21666;
因为z的定标值为5,故定点z=21666,即为浮点的z=21666/32=677.08。
2.3除法运算的C语言定点摸拟
设浮点除法运算的表达式为:
float x,y,z;
z=x/y;
假设经过统计后被除数x的定标值为Qx,除数y的定标值为Qy,商z的定标值为Qz,则
z=x/y
zq*2-Qz=(xq*2-Qx)/(yq*2-Qy)
zq=(xq*2(Qz-Qx+Qy))/yq
所以定点表示的除法为:
int x,y,z;
long temp;
temp=(long)x;
z=(temp<<(Qz-Qx+Qy))/y;
例1.6定点除法。
设x=18.4,y=36.8,浮点运算值为z=x/y=18.4/36.8=0.5;
根据上节,得Qx=10,Qy=9,Qz=15;所以有
z=18841,y=18841;
temp=(long)18841;
z=(18841L<<(15-10+9)/18841=3O8690944L/18841=16384;
因为商z的定标值为15,所以定点z=16384,即为浮点z=16384/215=0.5。
2.4程序变量的Q值确定
在前面几节介绍的例子中,由于x,y,z的值都是已知的,因此从浮点变为定点时Q值很好确定。在实际的DSP应用中,程序中参与运算的都是变量,那么如何确定浮点程序中变量的Q值呢?从前面的分析可以知道,确定变量的Q值实际上就是确定变量的动态范围,动态范围确定了,则Q值也就确定了。
设变量的绝对值的最大值为 max ,注意 max 必须小于或等于32767。取一个整数n,使满足
2n-1< max <2n
则有
2-Q=2-15*2n=2-(15-n)
Q=15-n
例如,某变量的值在-1至+1之间,即 max <1,因此n=0,Q=15-n=15。
既然确定了变量的 max 就可以确定其Q值,那么变量的 max 又是如何确定的呢?一般来说,确定变量的 max 有两种方法。一种是理论分析法,另一种是统计分析法。
1. 理论分析法
有些变量的动态范围通过理论分析是可以确定的。例如:
(1)三角函数。y=sin(x)或y=cos(x),由三角函数知识可知, y <=1。
(2)汉明窗。y(n)=0.54一0.46cos[nπn/(N-1)],0<=n<=N-1。因为-1<=cos[2πn/(N-1)]<=1,所以0.08<=y(n)<=1.0。
(3)FIR卷积。y(n)=∑h(k)x(n-k),设∑ h(k) =1.0,且x(n)是模拟信号12位量化值,即有 x(n) <=211,则 y(n) <=211。
(4)理论已经证明,在自相关线性预测编码(LPC)的程序设计中,反射系数ki满足下列不等式: ki <1.0,i=1,2,...,p,p为LPC的阶数。
2. 统计分析法
对于理论上无法确定范围的变量,一般采用统计分析的方法来确定其动态范围。所谓统计分析,就是用足够多的输入信号样值来确定程序中变量的动态范围,这里输入信号一方面要有一定的数量,另一方面必须尽可能地涉及各种情况。例如,在语音信号分析中,统计分析时就必须来集足够多的语音信号样值,并且在所采集的语音样值中,应尽可能地包含各种情况。如音量的大小,声音的种类(男声、女声等)。只有这样,统计出来的结果才能具有典型性。
当然,统计分析毕竟不可能涉及所有可能发生的情况,因此,对统计得出的结果在程序设计时可采取一些保护措施,如适当牺牲一些精度,Q值取比统计值稍大些,使用DSP芯片提供的溢出保护功能等。
2.5浮点至定点变换的C程序举例
本节我们通过一个例子来说明C程序从浮点变换至定点的方法。这是一个对语音信号(0.3~3.4kHz)进行低通滤波的C语言程序,低通滤波的截止频率为800Hz,滤波器采用19点的有限冲击响应FIR滤波。语音信号的采样频率为8kHz,每个语音样值按16位整型数存放在insp.dat文件中。
例1.7语音信号800Hz 19点FIR低通滤波C语言浮点程序。
#include <stdio.h>
const int length=180/*语音帧长为180点=22.5ms@8kHz采样*/
void filter(int xin[],int xout[],int n,float h[]);/*滤波子程序说明*/
/*19点滤波器系数*/
static float h[19]=
{0.01218354,-0.009012882,-0.02881839,-0.04743239,-0.04584568,
-0.008692503,0.06446265,0.1544655,0.2289794,0.257883,
0.2289794,0.1544655,0.06446265,-0.008692503,-0.04584568,
-0.04743239,-0.02881839,-0.009012882,O.01218354};
static int xl[length+20];
/*低通滤波浮点子程序*/
void filter(int xin[],int xout[],int n,float h[])
{
int i,j;
float sum;
for(i=0;i<length;i++)x1[n+i-1]=xin;
for(i=0;i<length;i++)
{
sum=0.0;
for(j=0;j<n;j++)sum+=h[j]*x1[i-j+n-1];
xout=(int)sum;
for(i=0;i<(n-l);i++)x1[n-i-2]=xin[length-1-i];
}
/*主程序*/
void main()
FILE *fp1,*fp2;
int frame,indata[length],outdata[length]fp1=fopen(insp.dat,\"rb\";/* 输入语音文件*/
fp2=fopen(Outsp.dat,\"wb\";/* 滤波后语音文件*/
frame=0;
while(feof(fp1) ==0)
{
frame++;
printf(“frame=%d\n”,frame);
for(i=0;i<length;i++)indata=getw(fp1); /*取一帧语音数据*/
filter(indata,outdata,19,h);/*调用低通滤波子程序*/
for(i=0;i<length;i++)putw(outdata,fp2);/*将滤波后的样值写入文件*/
}
fcloseall();/*关闭文件*/
return(0);
} |