太阳能光伏发电是当前利用新能源的主要方式之一,光伏并网发电是光伏发电的发展趋势。光伏并网发电的主要问题是提高系统中太阳能电池阵列的工作效率和整个系统的工作稳定性,实现并网发电系统输出的交流正弦电流与电网电压同频同相[1-2]。最大功率点跟踪MPPT(maximum power point tracking)是太阳能光伏发电系统中的重要技术,它能充分提高光伏阵列的整体效率。在确定的外部条件下,随着负载的变化,太阳能电池的输出功率也会变化,但始终存在一个最大功率点。当工作环境变化时,特别是日光照度和结温变化时,太阳能电池的输出特性也随之变化,且太阳能电池输出特性的变化非常复杂。目前太阳能光伏发电系统转换效率较低且价格昂贵,因此,使用最大功率点跟踪技术提高太阳能电池的利用效率,充分利用太阳能电池的转换能量,应是光伏系统研究的一个重要方向。
1 单相光伏并网发电系统的组成
单相光伏并网发电系统的功能是将太阳能电池阵列输出的直流电变换为交流电,经过交流滤波后把正弦波交流电送入电网。并网DC/AC逆变器是光伏并网发电系统的核心部件之一,主要采用电压源型电流控制。为满足电压源型电流控制并网逆变器的固有交直流变化比关系,即直流侧电压要高于交流侧电压,在光伏电池阵列输出电压较低的系统中,在DC/AC逆变电路前增加一个Boost(升压)电路进行电压匹配。光伏并网发电系统采用双闭环控制实现并网电流与电网电压同频同相的跟踪,并稳定全桥逆变电路的直流母线电压。图1是单相光伏并网发电系统框图。
2 光伏并网系统工作电路原理
光伏并网系统工作时的电路原理图如图2所示[3-4]。图中,Vg是电网电压,Vi是并网逆变器输出的高频SPWM电压,R为线路等效电阻,L为串联电感,I为送入电网的电流。
为保证送入电网功率因数为1,送入电网的电流相位必须与电网电压相位一致。以电网电压Vg为参考,则I与Vg同相位,线路等效电阻R两端的电压VR与电网电压Vg相位一致,串联电抗器L两端的电压VL相位则落后于VR 90°,由此可得Vi相位和幅值。图3为系统工作矢量图。
3 光伏并网系统MPPT跟踪算法
太阳能光伏电池输出特性为非线性,输出功率受光照强度和环境温度的影响非常明显。在任何时刻,光伏电池都存在一个最大输出功率的工作点,而且随着光照强度和温度的变化,最大功率点的位置也在不断变化。为能充分利用太阳能光伏电池的光电转换能力,就需要实时控制光伏电池的工作点,以获得最大功率输出。
3.1 定步长算法
图4是具有定步长的MPPT一阶差分算法框图。实现太阳能光伏阵列的最大功率点跟踪实质上是一个自寻优过程[5],通过对光伏阵列当前时刻输出电压与电流的检测,得到当前时刻光伏阵列输出功率,再与已被存储的前一时刻光伏阵列功率值比较,舍小存大,再检测,再相比较,如此不停地周而复始,便可使光伏阵列动态地工作在最大功率点上。功率达到最大值时满足:
3.2 变步长控制算法
由光伏阵列的I-V特性曲线可知,只有当光伏阵列工作在最大功率点时,光伏阵列才能输出最大功率[6-7]。定步长的MPPT一阶差分算法是以光伏阵列输出功率最大为跟踪目标的。但在实际系统中,最重要的是负载获得的功率是否为最大。基于此提出以负载获得功率的变化代替以光伏阵列输出功率的变化来进行最大功率点跟踪的控制策略。同时,根据电网电压基本上为恒定值的特性,对注入电网的电流的变化进行最大功率点跟踪。在具体控制算法上采用改进的变步长电压扰动法,当离最大功率点较远时,步长较大,寻优速度加快;当接近最大功率点时,步长较小,逐渐地逼近最大功率点;当非常接近最大功率点时,系统稳定在该点工作,最终实现光伏阵列的真正最大功率点跟踪。电流在实际的跟踪过程中,搜索步长要根据当前光伏阵列的工作点相对于最大功率点的距离而作出相应改变;同时,在搜索过程中,为了避免误判断设置了光伏阵列工作电压的上下限幅值。相应的控制框图如图5所示。
|