而在小型化的Lidar技术中,光学相控阵(OPA)激光雷达受到芯片成熟度不足等各种问题的牵制,离落地还有一段较长的路要走。Flash激光雷达暂时无法同时满足远近成像的要求,但随着单光子面阵探测技术的成熟,有望成为未来的激光雷达技术路线方向。所以,MEMS Lidar是目前最有可能先落地的车载Lidar方案。 第一是MEMS微振镜帮助激光雷达摆脱了笨重的马达、多棱镜等机械运动装置,毫米级尺寸的微振镜大大减少了激光雷达的尺寸,无论从美观度、车载集成度还是成本角度来讲,其优势都是十分明显的。 第二,MEMS微振镜的引入可以减少激光器和探测器数量,极大地降低成本。采用二维MEMS微振镜,仅需要一束激光光源,通过一面MEMS微振镜来反射激光器的光束,两者采用微秒级的频率协同工作,通过探测器接收后达到对目标物体进行3D扫描的目的。与多组发射/接收芯片组的机械式激光雷达结构相比,MEMS激光雷达对激光器和探测器的数量需求明显减少。 第三,MEMS微振镜不是新技术,可以直接使用。其最成功的应用案例就是德州仪器(TI)的DLP(DigitalLight Processing,数字光处理)显示,其DMD芯片全球独供,在投影机的BOM成本比例中占比也很高。此外,在3D摄像头、条形码扫描、激光打印机、医疗成像、光通讯等领域,MEMS微振镜也不乏成功应用案例。 但MEMS Lidar在车载上的落地工作也不是一帆风顺,车载环境有它的特殊难题,信赖性就是最大的因素。MEMS微振镜属于振动敏感性器件,车载环境下的振动和冲击容易对它的使用寿命和工作稳定性产生不良影响,使得激光雷达的测量性能恶化。 工作温度范围也是MEMS微振镜通过车规的一大门槛。通常情况下,车规级产品需要核心元器件满足-40℃到125℃的工作范围。在实际应用过程中,MEMS微振镜的材料属性会随着环境温度的改变而发生变化,从而导致微振镜运动特性的变化。因此材料的选择和制造工艺对实现车规级MEMS微振镜来说,是巨大的挑战。还有就是芯片尺寸缩小,会直接影响MEMS Lidar的旋转角度,而要得到较大的角度,就需要把芯片的尺寸做大,这与Lidar小型化、低成本化的初衷是矛盾的。 最后,激光由于波长较短,面对极端天气如雨、雾、霾时,测量准确性会大大下降。这时毫米波雷达的存在就显得十分有必要了。
|