系统设计人员正面临越来越多的挑战,他们需要在不降低系统组件(例如:高速数据转换器)性能的情况下让其设计最大程度地节能。设计人员们可能会转而采用许多电池供电的应用(例如:某种手持终端、软件无线设备或便携式超声波扫描仪),也可能会缩小产品的外形尺寸,从而需要寻求减少发热的诸多方法。
极大降低系统功耗的一种方法是对高速数据转换器的电源进行优化。数据转换器设计和工艺技术的一些最新进展,让许多新型 ADC可以直接由开关电源来驱动,从而达到最大化功效的目的。
系统设计人员们习惯在开关稳压器和 ADC之间使用一些低噪、低压降稳压器 (LDO),以清除输出噪声和开关频率谐波(请参见图1)。但是,这种干净的电 源设计的代价是高功耗,因为 LDO要求压降余量来维持正常的运行。最低压降 一般为 200到500mV,但在一些系统中其可以高达 1到2V(例如,ADC的3.3-V 电压轨产生自一个使用LDO的5V开关电源时)。
图1从传统电源转到最大功效电源
就一个要求 3.3-V 电压轨的数据转换 器而言 ,300mV的 LDO 压降增加约10% 的ADC 功耗。这种效应在数据转换器中得到放大,因为它具有更小的工艺节点和更低的电源电压。例如,1.8V 时,相同300-mV 压降增加约17%(300mV/1.8 V)的ADC 功耗。因此,将该链的低噪声 LDO 去除可以产生巨大的节能效果。去除LDO还可以降低设计的板级空间、热量以及成本。
本文阐述了包括超高性能 16位 ADC 在内的一些 TI高速 ADC 可在 ADC 性能无明显降低的条件下直接通过开关稳压器驱动。为了阐述的方便,我们对两款不同的数据转换器(一款使用高性能 BiCOM 技术(TI 的ADS5483),另 一款使用低功耗CMOS 技术(TI 的ADS6148)进行了开关电源噪声敏感性研究。本文的其他部分对所得结果进行了一一介绍。
BiCOM 技术—ADS5483
这种工艺技术实现了宽输入频率范围下的高信噪比 (SNR) 和高无杂散动态范围(SFDR)。BiCOM 转换器一般还具有许多片上去耦电容和非常不错的电源抑制比(PSRR)。我们对ADS5483 评估板(ADS5483EVM) 进行了电源研究,其具有一个使用 TI TPS5420开关稳压器 (Sw_Reg) 的板上电源;一个低噪声LDO(TI 的TPS79501);以及一个外部实验室电源使用选项。我们使用图 2所示不同结构实施了5 次实验,旨在确定ADS5483 通过一个开关稳压器直接运行时出现的性能降低情况。由于 ADS5483 模拟5-V电源到目前为止表现出对电源噪声的最大敏感性,因此该研究忽略了3.3-V 电源的噪声。ADS5483产品说明书中列出的 PSRR 支持这种情况:两个 3.3-V 电源的 PSRR 至少高出5-V模拟电源20 dB。 图2使用ADS5483EVM 的5次实验电源结构
5次实验的结构变化配置如下:
实验1—一个5-V实验室电源直接连接到5-V 模拟输入,同时绕过开关稳压器(TPS5420) 和低噪声LDO (TPS79501)。使用一个板上 LDO(TI 的TPS79633)生成ADS5483低敏感度3.3-V 模拟及数字电源的3.3-V 电压轨。
实验2—将一个 10-V 实验室电源连接到 TPS5420 降压稳压器,其使用一个5.3-V 输出。这样可为 TPS79501 提供一个300-mV 压降,从而生成一个 5-V电压轨。
实验3—使用TPS5420,从10-V 实验室电源生成一个5-V电压轨。本实验中, 我们绕过了 TPS79501 低噪声LDO。图3a表明,如“实验 2”连接的 LDO较 好地减少了开关稳压器的5.3-V 输出峰值电压。但是,图 3b表明5-VVDDA 电压轨铁氧体磁珠之后输出没有巨大的差异。
图3实验2(使用LDO)和实验3(无LDO)的示波器截图对比
实验4—本实验配置方法与“实验 3”相同,但去除了 TPS5420 输出的RC缓冲器电路,其会引起高振铃和大开关频率杂散。我们可在图4中清楚的观察到RC缓冲器电路的影响。去除 LDO并没有在铁氧体磁珠之后表现出明显的差异,而去除 RC 缓冲器电路则会导致更大的清洁5-VVDDA 电压轨电压峰值进入ADC。我们将在稍后详细研究RC缓冲器电路的 影响。
图4 5-VVDDA电压轨的电源噪声
实验5—将一个8-Ω 功率电阻连接到5-V电源,模拟如现场可编程门阵列 (FPGA) 等额外负载。TPS5420必须提供更高的输出电流,并更努力地驱动其内 部开关,从而产生更大的输出杂散。通过重复进行“实验 2”、“实验 3”和“实 验4”可以测试这种配置。
测量结果
我们利用输入信号频率扫描对比了5个实验。先使用135 MSPS 采样速率然后 使用80 MSPS 采样速率对三个ADS5483EVM 实施了这种实验,均没有观察到 巨大的性能差异。在使用135-MSPS 采样速率情况下,SNR和SFDR 的频率扫描如图5所示。 在10 到130MHz输入频率下SNR 的最大变化约为0.1dB。SFDR结果也非 常接近;在某些输入频率(例如:80MHz)下,可以观测到下降1至2 dB。
图5 10到130MHz 输入频率扫描
5个实验的FFT 曲线图对比(请参见图 6)显示噪声底限或杂散振幅没有出现较大的增加。使用LDO 清除开关噪声使得输出频谱看起来几乎与干净 5-V实 验室电源完全一样。去除 LDO以后,我们观测到从开关稳压器产生了两个杂散, 其具有一个来自 10-MHz输入音调的约500 kHz 频率偏置。RC缓冲器电路降低这些杂散振幅约 3dB,从约 –108 dBc 降到了约 –111 dBc。这一值低于 ADS5483的平均杂散振幅,其表明 ADS5483 可以在不牺牲SNR或SFDR 性 能的情况下直接由一个开关稳压器来驱动。
图6 500-kHz 偏置杂散65k-点 FFT 图 RC 缓冲器 降压稳压器输出能够以相当高的开关速度对非常大的电压实施开关操作。本文中,将TPS5420 的输入电压轨设定为10V,我们可以在输出端观测到许多过冲 和振铃,如图 7a 所示。为了吸收一些电源电路电抗能量,我们将 RC 缓冲电 路添加到了 TPS5420 的输出(请参见图7b)。该电路提供了一个高频接地通路, 其对过冲起到了一些阻滞作用。图7a表明RC缓冲器降低过冲约50%,并且几乎完全消除了振铃。我选用了R = 2.2Ω 和C = 470 pF 的元件值。稳压器的 开关频率范围可以为 500kHz 到约6MHz,具体取决于制造厂商,因此可能需 要我们对R 和C 值进行调节。这种解决方案的代价是带来一些额外的分流电 阻 AC功耗(尽管电阻非常的小),其降低稳压器总功效不足 1%。
图7 TPS5420 开关稳压器 |