一直没有理解SCI中FIFO堆栈,例程中的红色字体的数据流是怎样发送与接收的呢?开始发送的是00么?接收到的数据是存在FIFO中还是RXBUFER中呢?例程中rdataA=SciaRegs.SCIRXBUF.all; // Read data 初学DSP太多有不明白的,跪求大神,虚心受教
// TI File $Revision: /main/3 $
// Checkin $Date: December 17, 2009 14:36:39 $
//###########################################################################
//
// FILE: Example_2802xSci_FFDLB_int.c
//
// TITLE: DSP2802x Device SCI Digital Loop Back porgram.
//
//
// ASSUMPTIONS:
//
// This program requires the DSP2802x header files.
//
// This program uses the internal loop back test mode of the peripheral.
// Other then boot mode pin configuration, no other hardware configuration
// is required.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2802x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table
// While an emulator is connected to y**ice, the TRSTn pin = 1,
// which sets the device into EMU_BOOT boot mode. In this mode, the
// peripheral boot modes are as follows:
//
// Boot Mode: EMU_KEY EMU_BMODE
// (0xD00) (0xD01)
// ---------------------------------------
// Wait !=0x55AA X
// I/O 0x55AA 0x0000
// SCI 0x55AA 0x0001
// Wait 0x55AA 0x0002
// Get_Mode 0x55AA 0x0003
// SPI 0x55AA 0x0004
// I2C 0x55AA 0x0005
// OTP 0x55AA 0x0006
// Wait 0x55AA 0x0007
// Wait 0x55AA 0x0008
// SARAM 0x55AA 0x000A <-- "Boot to SARAM"
// Flash 0x55AA 0x000B
// Wait 0x55AA Other
//
// Write EMU_KEY to 0xD00 and EMU_BMODE to 0xD01 via the debugger
// according to the Boot Mode Table above. Build/Load project,
// Reset the device, and Run example
//
// $End_Boot_Table
//
// Assumes the device has both SCI-A and SCI-B peripherals.
//
// DESCRIPTION:
//
// This program is a SCI example that uses the internal loopback of
// the peripheral. Both interrupts and the SCI FIFOs are used.
//
// A stream of data is sent and then compared to the recieved stream.
//
// The SCI-A sent data looks like this:
// 00 01
// 01 02
// 02 03
// ....
// FE FF
// FF 00
// etc..
//
//
//
// The pattern is repeated forever.
//
// Watch Variables:
// sdataA Data being sent
// rdataA Data received
// rdata_pointA Keep track of where we are in the datastream
// This is used to check the incoming data
//###########################################################################
// Original Source by S.D.
//
// $TI Release: 2802x Header Files V1.27 $
// $Release Date: June 28, 2010 $
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
#define CPU_FREQ 6E6 // Default = 40 MHz. Change to 60E6 for 60 MHz devices
#define LSPCLK_FREQ CPU_FREQ/4
#define SCI_FREQ 100E3
#define SCI_PRD (LSPCLK_FREQ/(SCI_FREQ*8))-1
// Prototype statements for functions found within this file.
interrupt void sciaTxFifoIsr(void);
interrupt void sciaRxFifoIsr(void);
interrupt void scibTxFifoIsr(void);
interrupt void scibRxFifoIsr(void);
void scia_fifo_init(void);
void scib_fifo_init(void);
void error(void);
// Global variables
Uint16 sdataA[2]; // Send data for SCI-A
Uint16 rdataA[2]; // Received data for SCI-A
Uint16 rdata_pointA; // Used for checking the received data
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2802x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2802x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio();
// Setup only the GP I/O only for SCI-A and SCI-B functionality
// This function is found in DSP2802x_Sci.c
InitSciGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2802x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2802x_DefaultIsr.c.
// This function is found in DSP2802x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.SCIRXINTA = &sciaRxFifoIsr;
PieVectTable.SCITXINTA = &sciaTxFifoIsr;
EDIS; // This is needed to disable write to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2802x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
scia_fifo_init(); // Init SCI-A
// Step 5. User specific code, enable interrupts:
// Init send data. After each transmission this data
// will be updated for the next transmission
for(i = 0; i<2; i++)
{
sdataA = i;
}
rdata_pointA = sdataA[0];
// Enable interrupts required for this example
PieCtrlRegs.PIECTRL.bit.ENPIE = 1; // Enable the PIE block
PieCtrlRegs.PIEIER9.bit.INTx1=1; // PIE Group 9, INT1
PieCtrlRegs.PIEIER9.bit.INTx2=1; // PIE Group 9, INT2
IER = 0x100; // Enable CPU INT
EINT;
// Step 6. IDLE loop. Just sit and loop forever (optional):
for(;;);
}
void error(void)
{
asm(" ESTOP0"); // Test failed!! Stop!
for (;;);
}
interrupt void sciaTxFifoIsr(void)
{
Uint16 i;
for(i=0; i< 2; i++)
{
SciaRegs.SCITXBUF=sdataA; // Send data
}
for(i=0; i< 2; i++) //Increment send data for next cycle
{
sdataA = (sdataA+1) & 0x00FF;
}
SciaRegs.SCIFFTX.bit.TXFFINTCLR=1; // Clear SCI Interrupt flag
PieCtrlRegs.PIEACK.all|=0x100; // Issue PIE ACK
}
interrupt void sciaRxFifoIsr(void)
{
Uint16 i;
for(i=0;i<2;i++)
{
rdataA=SciaRegs.SCIRXBUF.all; // Read data
}
for(i=0;i<2;i++) // Check received data
{
if(rdataA != ( (rdata_pointA+i) & 0x00FF) ) error();
}
rdata_pointA = (rdata_pointA+1) & 0x00FF;
SciaRegs.SCIFFRX.bit.RXFFOVRCLR=1; // Clear Overflow flag
SciaRegs.SCIFFRX.bit.RXFFINTCLR=1; // Clear Interrupt flag
PieCtrlRegs.PIEACK.all|=0x100; // Issue PIE ack
}
void scia_fifo_init()
{
SciaRegs.SCICCR.all =0x0007; // 1 stop bit, No loopback
// No parity,8 char bits,
// async mode, idle-line protocol
SciaRegs.SCICTL1.all =0x0003; // enable TX, RX, internal SCICLK,
// Disable RX ERR, SLEEP, TXWAKE
SciaRegs.SCICTL2.bit.TXINTENA =1;
SciaRegs.SCICTL2.bit.RXBKINTENA =1;
SciaRegs.SCIHBAUD = 0x0000;
SciaRegs.SCILBAUD = SCI_PRD;
SciaRegs.SCICCR.bit.LOOPBKENA =1; // Enable loop back
SciaRegs.SCIFFTX.all=0xC022;
SciaRegs.SCIFFRX.all=0x0022;
SciaRegs.SCIFFCT.all=0x00;
SciaRegs.SCICTL1.all =0x0023; // Relinquish SCI from Reset
SciaRegs.SCIFFTX.bit.TXFIFOXRESET=1;
SciaRegs.SCIFFRX.bit.RXFIFORESET=1;
}
//===========================================================================
// No more.
//===========================================================================
|