#include <string.h>
#include <stdio.h>
#include <math.h>
#include "pid_fuzzy.h"
//注1:自适应模糊pid最重要的就是论域的选择,要和你应该控制的对象相切合
//注2:以下各阀值、限幅值、输出值均需要根据具体的使用情况进行更改
//注3:因为我的控制对象惯性比较大,所以以下各部分取值较小
//论域e:[-5,5] ec:[-0.5,0.5]
//误差的阀值,小于这个数值的时候,不做PID调整,避免误差较小时频繁调节引起震荡
#define Emin 0.0
#define Emid 0.08
#define Emax 0.6
//调整值限幅,防止积分饱和
#define Umax 5
#define Umin -5
//输出值限幅
#define Pmax 7200
#define Pmin 0
#define NB 0
#define NM 1
#define NS 2
#define ZO 3
#define PS 4
#define PM 5
#define PB 6
int kp[7][7]= { {PB,PB,PM,PM,PS,ZO,ZO},
{PB,PB,PM,PS,PS,ZO,ZO},
{PM,PM,PM,PS,ZO,NS,NS},
{PM,PM,PS,ZO,NS,NM,NM},
{PS,PS,ZO,NS,NS,NM,NM},
{PS,ZO,NS,NM,NM,NM,NB},
{ZO,ZO,NM,NM,NM,NB,NB}
};
int kd[7][7]= { {PS,NS,NB,NB,NB,NM,PS},
{PS,NS,NB,NM,NM,NS,ZO},
{ZO,NS,NM,NM,NS,NS,ZO},
{ZO,NS,NS,NS,NS,NS,ZO},
{ZO,ZO,ZO,ZO,ZO,ZO,ZO},
{PB,NS,PS,PS,PS,PS,PB},
{PB,PM,PM,PM,PS,PS,PB}
};
int ki[7][7]= { {NB,NB,NM,NM,NS,ZO,ZO},
{NB,NB,NM,NS,NS,ZO,ZO},
{NB,NM,NS,NS,ZO,PS,PS},
{NM,NM,NS,ZO,PS,PM,PM},
{NM,NS,ZO,PS,PS,PM,PB},
{ZO,ZO,PS,PS,PM,PB,PB},
{ZO,ZO,PS,PM,PM,PB,PB}
};
/**************求隶属度(三角形)***************/
float FTri(float x,float a,float b,float c)//FuzzyTriangle
{
if(x<=a)
return 0;
else if((a<x)&&(x<=b))
return (x-a)/(b-a);
else if((b<x)&&(x<=c))
return (c-x)/(c-b);
else if(x>c)
return 0;
else
return 0;
}
/*****************求隶属度(梯形左)*******************/
float FTraL(float x,float a,float b)//FuzzyTrapezoidLeft
{
if(x<=a)
return 1;
else if((a<x)&&(x<=b))
return (b-x)/(b-a);
else if(x>b)
return 0;
else
return 0;
}
/*****************求隶属度(梯形右)*******************/
float FTraR(float x,float a,float b)//FuzzyTrapezoidRight
{
if(x<=a)
return 0;
if((a<x)&&(x<b))
return (x-a)/(b-a);
if(x>=b)
return 1;
else
return 1;
}
/****************三角形反模糊化处理**********************/
float uFTri(float x,float a,float b,float c)
{
float y,z;
z=(b-a)*x+a;
y=c-(c-b)*x;
return (y+z)/2;
}
/*******************梯形(左)反模糊化***********************/
float uFTraL(float x,float a,float b)
{
return b-(b-a)*x;
}
/*******************梯形(右)反模糊化***********************/
float uFTraR(float x,float a,float b)
{
return (b-a)*x +a;
}
/**************************求交集****************************/
float fand(float a,float b)
{
return (a<b)?a:b;
}
/**************************求并集****************************/
float forr(float a,float b)
{
return (a<b)?b:a;
}
float ec;
/*========== PID计算部分 ======================*/
int PID_realize(PID *structpid,uint16_t s,uint16_t in)
{
float pwm_var;//pwm调整量
float iError;//当前误差
float set,input;
//计算隶属度表
float es[7],ecs[7],e;
float form[7][7];
int i=0,j=0;
int MaxX=0,MaxY=0;
//记录隶属度最大项及相应推理表的p、i、d值
float lsd;
int temp_p,temp_d,temp_i;
float detkp,detkd,detki;//推理后的结果
//输入格式的转化及偏差计算
set=(float)s/100.0;
input=(float)in/100.0;
iError = set - input; // 偏差
e=iError;
ec=iError-structpid->LastError;
//当温度差的绝对值小于Emax时,对pid的参数进行调整
if(fabs(iError)<=Emax)
{
//计算iError在es与ecs中各项的隶属度
es[NB]=FTraL(e*5,-3,-1); //e
es[NM]=FTri(e*5,-3,-2,0);
es[NS]=FTri(e*5,-3,-1,1);
es[ZO]=FTri(e*5,-2,0,2);
es[PS]=FTri(e*5,-1,1,3);
es[PM]=FTri(e*5,0,2,3);
es[PB]=FTraR(e*5,1,3);
ecs[NB]=FTraL(ec*30,-3,-1);//ec
ecs[NM]=FTri(ec*30,-3,-2,0);
ecs[NS]=FTri(ec*30,-3,-1,1);
ecs[ZO]=FTri(ec*30,-2,0,2);
ecs[PS]=FTri(ec*30,-1,1,3);
ecs[PM]=FTri(ec*30,0,2,3);
ecs[PB]=FTraR(ec*30,1,3);
//计算隶属度表,确定e和ec相关联后表格各项隶属度的值
for(i=0; i<7; i++)
{
for(j=0; j<7; j++)
{
form[i][j]=fand(es[i],ecs[j]);
}
}
//取出具有最大隶属度的那一项
for(i=0; i<7; i++)
{
for(j=0; j<7; j++)
{
if(form[MaxX][MaxY]<form[i][j])
{
MaxX=i;
MaxY=j;
}
}
}
//进行模糊推理,并去模糊
lsd=form[MaxX][MaxY];
temp_p=kp[MaxX][MaxY];
temp_d=kd[MaxX][MaxY];
temp_i=ki[MaxX][MaxY];
if(temp_p==NB)
detkp=uFTraL(lsd,-0.3,-0.1);
else if(temp_p==NM)
detkp=uFTri(lsd,-0.3,-0.2,0);
else if(temp_p==NS)
detkp=uFTri(lsd,-0.3,-0.1,0.1);
else if(temp_p==ZO)
detkp=uFTri(lsd,-0.2,0,0.2);
else if(temp_p==PS)
detkp=uFTri(lsd,-0.1,0.1,0.3);
else if(temp_p==PM)
detkp=uFTri(lsd,0,0.2,0.3);
else if(temp_p==PB)
detkp=uFTraR(lsd,0.1,0.3);
if(temp_d==NB)
detkd=uFTraL(lsd,-3,-1);
else if(temp_d==NM)
detkd=uFTri(lsd,-3,-2,0);
else if(temp_d==NS)
detkd=uFTri(lsd,-3,1,1);
else if(temp_d==ZO)
detkd=uFTri(lsd,-2,0,2);
else if(temp_d==PS)
detkd=uFTri(lsd,-1,1,3);
else if(temp_d==PM)
detkd=uFTri(lsd,0,2,3);
else if(temp_d==PB)
detkd=uFTraR(lsd,1,3);
if(temp_i==NB)
detki=uFTraL(lsd,-0.06,-0.02);
else if(temp_i==NM)
detki=uFTri(lsd,-0.06,-0.04,0);
else if(temp_i==NS)
detki=uFTri(lsd,-0.06,-0.02,0.02);
else if(temp_i==ZO)
detki=uFTri(lsd,-0.04,0,0.04);
else if(temp_i==PS)
detki=uFTri(lsd,-0.02,0.02,0.06);
else if(temp_i==PM)
detki=uFTri(lsd,0,0.04,0.06);
else if (temp_i==PB)
detki=uFTraR(lsd,0.02,0.06);
//pid三项系数的修改
structpid->Kp+=detkp;
structpid->Ki+=detki;
//structpid->Kd+=detkd;
structpid->Kd=0;//取消微分作用
//对Kp,Ki进行限幅
if(structpid->Kp<0)
{
structpid->Kp=0;
}
if(structpid->Ki<0)
{
structpid->Ki=0;
}
//计算新的K1,K2,K3
structpid->K1=structpid->Kp+structpid->Ki+structpid->Kd;
structpid->K2=-(structpid->Kp+2*structpid->Kd);
structpid->K3=structpid->Kd;
}
if(iError>Emax)
{
structpid->pwm_out=7200;
pwm_var = 0;
structpid->flag=1;//设定标志位,如果误差超过了门限值,则认为当控制量第一次到达给定值时,应该采取下面的 抑制超调 的措施
}
else if(iError<-Emax)
{
structpid->pwm_out=0;
pwm_var = 0;
}
else if( fabs(iError) < Emin ) //误差的阀值(死区控制??)
{
pwm_var = 0;
}
else
{
if( iError<Emid && structpid->flag==1 )//第一次超过(设定值-Emid(-0.08)摄氏度),是输出为零,防止超调,也可以输出其他值,不至于太小而引起震荡
{
structpid->pwm_out=0;
structpid->flag=0;
}
else if( -iError>Emid)//超过(设定+Emid(+0.08)摄氏度)
{
pwm_var=-1;
}
else
{
//增量计算
pwm_var=(structpid->K1 * iError //e[k]
+ structpid->K2 * structpid->LastError //e[k-1]
+ structpid->K3 * structpid->PrevError); //e[k-2]
}
if(pwm_var >= Umax)pwm_var = Umax; //调整值限幅,防止积分饱和
if(pwm_var <= Umin)pwm_var = Umin; //调整值限幅,防止积分饱和
}
structpid->PrevError=structpid->LastError;
structpid->LastError=iError;
structpid->pwm_out += 360*pwm_var; //调整PWM输出
if(structpid->pwm_out > Pmax)structpid->pwm_out = Pmax; //输出值限幅
if(structpid->pwm_out < Pmin)structpid->pwm_out = Pmin; //输出值限幅
return (int)(structpid->pwm_out); // 微分项
}
void PID_Set(PID *structpid,float Kp,float Ki,float Kd,float T)
{
(*structpid).Kp=Kp;//Kp*(1+(Td/T));
(*structpid).Ki=Ki;
(*structpid).Kd=Kd;
(*structpid).T=T;
structpid->K1=structpid->Kp*(1+structpid->Ki+structpid->Kd);
structpid->K2=-(structpid->Kp+2*structpid->Kp*structpid->Kd);
structpid->K3=structpid->Kp*structpid->Kd;
}
void PID_Init(PID *structpid)
{
PID_Set(structpid,8.3,1.2,0,1);
structpid->flag=0;
structpid->pwm_out=0;
}
#ifndef PID_H_
#define PID_H_
#include "stm32f10x.h"
typedef struct PID
{
float Kp; // 增量式积分系数
float Ki;
float Kd;
float T;
float K1; // 增量式积分系数
float K2;
float K3;
float LastError; //Error[-1]
float PrevError; // Error[-2]
float pwm_out;
uint16_t flag;//温度状态标志位
}PID;
//void PID_init(PID *structpid);
void PID_Set(PID *structpid,float Kp,float Ki,float Kd,float T);
int PID_realize(PID *structpid,uint16_t s,uint16_t in);
void PID_Init(PID *structpid);
#endif /* PID_H_ */
|
|