/**************************************************************************//**
* [url=home.php?mod=space&uid=288409]@file[/url] main.c
* [url=home.php?mod=space&uid=895143]@version[/url] V3.00
* [url=home.php?mod=space&uid=247401]@brief[/url] Demonstrate how to use HIRC as ADC clock source to achieve 1411 ksps ADC conversion rate.
*
* SPDX-License-Identifier: Apache-2.0
* [url=home.php?mod=space&uid=17282]@CopyRight[/url] (C) 2020 Nuvoton Technology Corp. All rights reserved.
******************************************************************************/
#include <stdio.h>
#include "NuMicro.h"
/*---------------------------------------------------------------------------------------------------------*/
/* Define global variables and constants */
/*---------------------------------------------------------------------------------------------------------*/
volatile uint32_t g_u32AdcIntFlag;
void SYS_Init(void)
{
/* Unlock protected registers */
SYS_UnlockReg();
/* Enable HIRC clock (Internal RC 48 MHz) */
CLK_EnableXtalRC(CLK_PWRCTL_HIRCEN_Msk);
/* Wait for HIRC clock ready */
CLK_WaitClockReady(CLK_STATUS_HIRCSTB_Msk);
/* Select HCLK clock source as HIRC and HCLK source divider as 1 */
CLK_SetHCLK(CLK_CLKSEL0_HCLKSEL_HIRC, CLK_CLKDIV0_HCLK(1));
/* Enable UART module clock */
CLK_EnableModuleClock(UART0_MODULE);
/* Switch UART0 clock source to HIRC */
CLK_SetModuleClock(UART0_MODULE, CLK_CLKSEL1_UART0SEL_HIRC, CLK_CLKDIV0_UART0(1));
/* Enable ADC module clock */
CLK_EnableModuleClock(ADC_MODULE);
/* ADC clock source is HCLK = PCLK1 = 48MHz, set divider to 2, ADC clock is 48/2 MHz */
CLK_SetModuleClock(ADC_MODULE, CLK_CLKSEL2_ADCSEL_PCLK1, CLK_CLKDIV0_ADC(2));
/* Update System Core Clock */
/* User can use SystemCoreClockUpdate() to calculate PllClock, SystemCoreClock and CycylesPerUs automatically. */
SystemCoreClockUpdate();
/*----------------------------------------------------------------------*/
/* Init I/O Multi-function */
/*----------------------------------------------------------------------*/
/* Set GPB multi-function pins for UART0 RXD and TXD */
SYS->GPB_MFPH &= ~(SYS_GPB_MFPH_PB12MFP_Msk | SYS_GPB_MFPH_PB13MFP_Msk);
SYS->GPB_MFPH |= (SYS_GPB_MFPH_PB12MFP_UART0_RXD | SYS_GPB_MFPH_PB13MFP_UART0_TXD);
/* Set PB.0 ~ PB.3 to input mode */
GPIO_SetMode(PB, BIT0|BIT1|BIT2|BIT3, GPIO_MODE_INPUT);
/* Configure the GPB0 - GPB3 ADC analog input pins. */
SYS->GPB_MFPL &= ~(SYS_GPB_MFPL_PB0MFP_Msk | SYS_GPB_MFPL_PB1MFP_Msk |
SYS_GPB_MFPL_PB2MFP_Msk | SYS_GPB_MFPL_PB3MFP_Msk);
SYS->GPB_MFPL |= (SYS_GPB_MFPL_PB0MFP_ADC0_CH0 | SYS_GPB_MFPL_PB1MFP_ADC0_CH1 |
SYS_GPB_MFPL_PB2MFP_ADC0_CH2 | SYS_GPB_MFPL_PB3MFP_ADC0_CH3);
/* Disable the GPB0 - GPB3 digital input path to avoid the leakage current. */
GPIO_DISABLE_DIGITAL_PATH(PB, BIT0|BIT1|BIT2|BIT3);
/* Lock protected registers */
SYS_LockReg();
}
void ADC_FunctionTest()
{
uint32_t u32ChannelCount;
int32_t i32ConversionData;
printf("\n");
printf("+----------------------------------------------------------------------+\n");
printf("| ADC 1411 ksps continuous scan mode sample code |\n");
printf("+----------------------------------------------------------------------+\n\n");
printf("+----------------------------------------------------------------------+\n");
printf("| ADC clock source -> PCLK1 = 48 MHz |\n");
printf("| ADC clock divider = 2 |\n");
printf("| ADC clock = 48 MHz / 2 = 24 MHz |\n");
printf("| ADC extended sampling time = 0 |\n");
printf("| ADC conversion time = 17 + ADC extended sampling time = 17 |\n");
printf("| ADC conversion rate = 24 MHz / 17 = 1411 ksps |\n");
printf("+----------------------------------------------------------------------+\n");
/* Enable ADC converter */
ADC_POWER_ON(ADC);
while(1)
{
printf(" Press any key to start the continuous scan mode test\n");
getchar();
/* Set the ADC operation mode as continuous scan, input mode as single-end and
enable the analog input channel 0, 1, 2 and 3 */
ADC_Open(ADC, ADC_ADCR_DIFFEN_SINGLE_END, ADC_ADCR_ADMD_CONTINUOUS, BIT0|BIT1|BIT2|BIT3);
/* Clear the A/D interrupt flag for safe */
ADC_CLR_INT_FLAG(ADC, ADC_ADF_INT);
/* Enable the sample module interrupt */
ADC_ENABLE_INT(ADC, ADC_ADF_INT); // Enable sample module A/D interrupt.
NVIC_EnableIRQ(ADC_IRQn);
/* Reset the ADC interrupt indicator and trigger sample module 0 to start A/D conversion */
g_u32AdcIntFlag = 0;
ADC_START_CONV(ADC);
/* Wait ADC interrupt (g_u32AdcIntFlag will be set at IRQ_Handler function) */
while(g_u32AdcIntFlag == 0);
/* Get the conversion result */
for(u32ChannelCount = 0; u32ChannelCount < 4; u32ChannelCount++)
{
i32ConversionData = ADC_GET_CONVERSION_DATA(ADC, u32ChannelCount);
printf("Conversion result of channel %d: 0x%X (%d)\n", u32ChannelCount, i32ConversionData, i32ConversionData);
}
printf("\n");
/* Stop A/D conversion */
ADC_STOP_CONV(ADC);
/* Disable the sample module interrupt */
ADC_DISABLE_INT(ADC, ADC_ADF_INT);
}
}
void ADC_IRQHandler(void)
{
g_u32AdcIntFlag = 1;
ADC_CLR_INT_FLAG(ADC, ADC_ADF_INT); /* Clear the A/D interrupt flag */
}
/*----------------------------------------------------------------------*/
/* Init UART0 */
/*----------------------------------------------------------------------*/
void UART0_Init(void)
{
/* Reset UART0 */
SYS_ResetModule(UART0_RST);
/* Configure UART0 and set UART0 baud rate */
UART_Open(UART0, 115200);
}
int32_t main(void)
{
/* Init System, IP clock and multi-function I/O. */
SYS_Init();
/* Init UART0 for printf */
UART0_Init();
printf("\nSystem clock rate: %d Hz", SystemCoreClock);
/* ADC function test */
ADC_FunctionTest();
/* Disable ADC IP clock */
CLK_DisableModuleClock(ADC_MODULE);
/* Disable External Interrupt */
NVIC_DisableIRQ(ADC_IRQn);
printf("Exit ADC sample code\n");
while(1);
}
|