[应用相关]

求助,ADC如何以理论最大采样率采集信号,并同步处理数据

[复制链接]
1118|15
手机看帖
扫描二维码
随时随地手机跟帖
elephant00|  楼主 | 2024-6-24 09:59 | 显示全部楼层 |阅读模式
我是刚入门使用stm32的小白,使用adc时遇到几个问题,想请教一下
配置时ADC频率36Mhz,采样时间是1.5*1/36M=0.041微妙,触发器频率为240/2=120M,计数器触发时间是1000次/120M=0.008ms,
问题:ADC采样时不会占用CPU吗,我想让ADC采样数据保存在内存(或其它储存),一直采集,在main函数中读取内存中adc采样的数据并进行处理,采样和数据处理时可以并行互不干扰吗

main.c代码:

#include "main.h"


/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#define BUFFER_SIZE 50

ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;


TIM_HandleTypeDef htim3;

UART_HandleTypeDef huart1;

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MPU_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_TIM3_Init(void);
static void MX_ADC1_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc);

uint32_t adcBuffer[BUFFER_SIZE];
uint32_t buffer_index = 0;
volatile uint8_t data_ready = 0;
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
#if 1
//#pragma import(__use_no_semihosting)            
//±ê×¼¿âÐèÒªµÄÖ§³Öº¯Êý                 
struct __FILE
{
        int handle;
};


FILE __stdout;      
//¶¨Òå_sys_exit()ÒÔ±ÜÃâʹÓðëÖ÷»úģʽ   
void _sys_exit(int x)
{
        x = x;
}
//Öض¨Òåfputcº¯Êý
int fputc(int ch, FILE *f)
{         
        while((USART1->ISR&0X40)==0);//Ñ­»··¢ËÍ,Ö±µ½·¢ËÍÍê±Ï   
        USART1->TDR=(uint8_t)ch;      
        return ch;
}
#endif

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{

    if(hadc->Instance == ADC1)
    {
        uint32_t val=HAL_ADC_GetValue(&hadc1);
        uint32_t Volt=(3300*val)>>10;
                                float Voltage = (float)Volt / 1000; // ????????,?????
        printf("%.3f \r\n",Voltage); // ??3???
                        
    }
}
/
int main(void)
{


  /* USER CODE BEGIN 1 */
/* USER CODE END 1 */


  /* MPU Configuration--------------------------------------------------------*/
  MPU_Config();
/* MCU Configuration--------------------------------------------------------*/


  MX_GPIO_Init();
  MX_DMA_Init();
  MX_TIM3_Init();
  MX_ADC1_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
        HAL_ADC_Start_IT(&hadc1);
        HAL_TIM_Base_Start(&htim3);
        
        // Start ADC with DMA
  


  /* USER CODE END 2 */


  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
                printf("123");
                HAL_Delay(250);
    /* USER CODE BEGIN 3 */


  }
  /* USER CODE END 3 */
}


/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};


  /** Supply configuration update enable
  */
  HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);


  /** Configure the main internal regulator output voltage
  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);


  while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}


  __HAL_RCC_SYSCFG_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0);


  while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}


  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 5;
  RCC_OscInitStruct.PLL.PLLN = 192;
  RCC_OscInitStruct.PLL.PLLP = 2;
  RCC_OscInitStruct.PLL.PLLQ = 2;
  RCC_OscInitStruct.PLL.PLLR = 2;
  RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_2;
  RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
  RCC_OscInitStruct.PLL.PLLFRACN = 0;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }


  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                              |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2;
  RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2;


  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
  {
    Error_Handler();
  }
}


/**
  * @brief ADC1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC1_Init(void)
{



  ADC_MultiModeTypeDef multimode = {0};
  ADC_ChannelConfTypeDef sConfig = {0};


  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV2;
  hadc1.Init.Resolution = ADC_RESOLUTION_10B;
  hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc1.Init.LowPowerAutoWait = DISABLE;
  hadc1.Init.ContinuousConvMode = ENABLE;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T3_TRGO;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
  hadc1.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR;
  hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
  hadc1.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE;
  hadc1.Init.OversamplingMode = DISABLE;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }


  /** Configure the ADC multi-mode
  */
  multimode.Mode = ADC_MODE_INDEPENDENT;
  if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
  {
    Error_Handler();
  }


  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_19;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
  sConfig.SingleDiff = ADC_SINGLE_ENDED;
  sConfig.OffsetNumber = ADC_OFFSET_NONE;
  sConfig.Offset = 0;
  sConfig.OffsetSignedSaturation = DISABLE;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */


  /* USER CODE END ADC1_Init 2 */


}


/**
  * @brief TIM3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM3_Init(void)
{


  /* USER CODE BEGIN TIM3_Init 0 */


  /* USER CODE END TIM3_Init 0 */


  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};


  /* USER CODE BEGIN TIM3_Init 1 */


  /* USER CODE END TIM3_Init 1 */
  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 2;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 999;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM3_Init 2 */


  /* USER CODE END TIM3_Init 2 */


}


/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{


  /* USER CODE BEGIN USART1_Init 0 */


  /* USER CODE END USART1_Init 0 */


  /* USER CODE BEGIN USART1_Init 1 */


  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */


  /* USER CODE END USART1_Init 2 */


}


/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{


  /* DMA controller clock enable */
  __HAL_RCC_DMA1_CLK_ENABLE();


  /* DMA interrupt init */
  /* DMA1_Stream0_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Stream0_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Stream0_IRQn);


}


/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */


  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();


/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}


/* USER CODE BEGIN 4 */


/* USER CODE END 4 */


/* MPU Configuration */


void MPU_Config(void)
{
  MPU_Region_InitTypeDef MPU_InitStruct = {0};


  /* Disables the MPU */
  HAL_MPU_Disable();


  /** Initializes and configures the Region and the memory to be protected
  */
  MPU_InitStruct.Enable = MPU_REGION_ENABLE;
  MPU_InitStruct.Number = MPU_REGION_NUMBER0;
  MPU_InitStruct.BaseAddress = 0x0;
  MPU_InitStruct.Size = MPU_REGION_SIZE_4GB;
  MPU_InitStruct.SubRegionDisable = 0x87;
  MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
  MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS;
  MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE;
  MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
  MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
  MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;


  HAL_MPU_ConfigRegion(&MPU_InitStruct);
  /* Enables the MPU */
  HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);


}


/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}


#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

使用特权

评论回复
LcwSwust| | 2024-6-24 11:48 | 显示全部楼层
试过了吗?程序有问题吗?

使用特权

评论回复
AdaMaYun| | 2024-6-24 22:20 | 显示全部楼层
ADC的DMA采样时不会占用CPU

使用特权

评论回复
喂什么玩意| | 2024-6-30 14:44 | 显示全部楼层
配置DMA来使ADC的转换结果直接存储到内存中,这样CPU可以在采样过程中执行其他任务,而不需要等待每次转换完成。

使用特权

评论回复
4c1l| | 2024-8-31 23:10 | 显示全部楼层
ADC 可以配置为中断模式,ADC 完成一次采样后会触发中断。

使用特权

评论回复
LOVEEVER| | 2024-9-13 18:06 | 显示全部楼层
ADC采样DMA传输对于MCU占用率小,直接数据转换传输

使用特权

评论回复
一只眠羊| | 2024-9-19 10:52 | 显示全部楼层
ADC采样本身可以设计为不占用CPU资源,特别是在使用DMA(直接内存访问)的情况下。DMA允许ADC在采集数据时直接将数据传输到内存中,而不需要CPU的干预。这样,CPU可以继续执行其他任务,如数据处理,而不会被ADC采样所阻塞。

使用特权

评论回复
为了实现ADC采样和数据处理的并行互不干扰,您需要配置ADC和DMA,设置ADC的采样频率和采样时间。根据您的描述,ADC频率为36MHz,采样时间为0.041微秒。配置DMA通道,使其在ADC完成一次采样后自动将数据传输到指定的内存区域。这样,ADC采样和数据传输可以并行进行。

使用特权

评论回复
在曼谷的春| | 2024-9-19 15:00 | 显示全部楼层
设置触发器频率为120MHz,计数器触发时间为0.008ms。确保触发器和ADC的配置同步,以便ADC在正确的时间点开始采样。

使用特权

评论回复
月亮一键变蓝| | 2024-9-19 17:00 | 显示全部楼层
在main函数中,您可以定期读取内存中的ADC采样数据,并进行处理。由于ADC采样和DMA传输是并行进行的,因此数据处理不会干扰ADC的采样过程。

使用特权

评论回复
失物招領| | 2024-9-19 21:00 | 显示全部楼层
你用cubemx配置的,加个DMA是不是会好点

使用特权

评论回复
她已醉| | 2024-9-19 23:00 | 显示全部楼层
现在用DMA应该就可以吧

使用特权

评论回复
我吃小朋友| | 2024-9-20 02:00 | 显示全部楼层
一般情况使用DMA会不占CPU的,而且速度会快很多

使用特权

评论回复
将爱藏于深海| | 2024-9-20 08:00 | 显示全部楼层
你这种操作应该不会有干扰的吧

使用特权

评论回复
温室雏菊| | 2024-9-20 10:00 | 显示全部楼层
其实弄个标记,比如存到多少之后就取出来,然后重新存就好了

使用特权

评论回复
春日负喧| | 2024-9-20 12:00 | 显示全部楼层
一般来说不会,因为是可以使用DMA来操作的

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

988

主题

3089

帖子

7

粉丝